
An Overview
of

Computational Complexity
S T E P H E N A. C O O K

University of T o r o n t o

The 1982 Taring Award was presented to Stephen Arthur Cook, Professor
of Computer Science at the University of Toronto, at the ACM Annual
Conference in Dallas on October 25, 1982. The award is the Association's
foremost recognition of technical contributions to the computing community.

The citation of Cook's achievements noted that "Dr. Cook has advanced
our understanding of the complexity of computation in a significant and
profound way. His seminal paper, The Complexity of Theorem Proving
Procedures, presented at the 1971 ACM SIGACT Symposium on the Theory
of Computing, laid the foundations for the theory of NP-completeness.
The ensuing exploration of the boundaries and nature of the NP-complete
class of problems has been one of the most active and important research
activities in computer science for the last decade.

Cook is well known for his influential results in fundamental areas of
computer science. He has made significant contributions to complexity theory,
to time-space tradeoffs in computation, and to logics for programming
languages. His work is characterized by elegance and insights and has
illuminated the very nature of computation."

During 1970-1979, Cook did extensive work under grants from the
National Research Council. He was also an E. W. R. Staecie Memorial

Author's present address: Department of Computer Science, University of Toronto,
Toronto, Canada M5S 1A7.

411

Fellowship recipient for 1977-1978. The author of numerous landmark
papers, he is currently involved in proving that no "good" algorithm exists
for NP-complete problems.

The ACM Taring Award memorializes A. M. Taring, the English
mathematician who made major contributions to the computing sciences.

An historical overview of computational complexity is presented. Emphasis is on
the fundamental issues of defining the intrinsic computational complexity of a
problem and proving upper and lower bounds on the complexity of problems.
Probabilistic and parallel computation are discussed.

This is the second Turing Award lecture on Computational Complexity.
The first was given by Michael Rabin in 1976.1 In reading Rabin's
excellent article [62] now, one of the things that strikes me is how much
activity there has been in the field since. In this brief overview I want
to mention what to me are the most important and interesting results
since the subject began in about 1960. In such a large field the choice
of topics is inevitably somewhat personal; however, I hope to include
papers which, by any standards, are fundamental.

1
Early Papers

The prehistory of the subject goes back, appropriately, to Alan
Turing. In his 1937 paper, On computable numbers with an application
to the Entscheidungsproblem [85], 'Ihring introduced his famous Turing
machine, which provided the most convincing formalization (up to that
time) of the notion of an effectively {or algorithmically) computable
function. Once this notion was pinned down precisely, impossibility
proofs for computers were possible. In the same paper Turing proved
that no algorithm (i.e., Turing machine) could, upon being given an
arbitrary formula of the predicate calculus, decide, in a finite number
of steps, whether that formula was satisfiable.

After the theory explaining which problems can and cannot be
solved by computer was well developed, it was natural to ask about
the relative computational difficulty of computable functions. This is
the subject matter of computational complexity. Rabin [59, 60] was one
of the first persons 11960) to address this general question explicitly:
what does it mean to say that f is more difficult to compute than g?
Rabin suggested an axiomatic framework that provided the basis for
the abstract complexity theory developed by Blum [6] and others.

A second early (1965) influential paper was On the computational
complexity of algorithms by J. Hartmanis and R. E. Stearns [37]. 2 This
paper was widely read and gave the field its title. The important

1Michael Rabin and Dana Scott shared the Turing Award in 1976.

2See Hartmanis [36] for some interesting reminiscences.

412 STEPHEN A. COOK

notion of complexity measure defined by the computation time on
multitape Turing machines was introduced, and hierarchy theorems
were proved. The paper also posed an intriguing question that is still
open today. Is any irrational algebraic number (such as x/-z) computable
in real time, that is, is there a 'Ihring machine that prints out the
decimal expansion of the number at the rate of one digit per 100 steps
forever?

A third founding paper (1965) was The intrinsic computational
difficulty of functions by Alan Cobham [15]. Cobham emphasized the
word "intrinsic," that is, he was interested in a machine-independent
theory. He asked whether multiplication is harder than addition, and
believed that the question could not be answered until the theory was
properly developed. Cobham also defined and characterized the
important class of functions he called .~Y: those functions on the natural
numbers computable in time bounded by a polynomial in the decimal
length of the input.

Three other papers that influenced the above authors as well as other
complexity workers {including myself} are Yamada [91], Bennett [4], and
Ritchie [66]. It is interesting to note that Rabin, Stearns, Bennett, and
Ritchie were all students at Princeton at roughly the same time.

1 9 8 2

'1 ,,ning
Av,,'an d

I , t ' (' l II I t"

2
Early Issues and Concepts

Several of the early authors were concerned with the question: What
is the right complexity measure? Most mentioned computation time or
space as obvious choices, but were not convinced that these were the
only or the right ones. For example, Cobham [15] suggested " . . . some
measure related to the physical notion of work [may] lead to the most
satisfactory analysis:' Rabin [60] introduced axioms which a complexity
measure should satisfy. With the perspective of 20 years experience,
I now think it is clear that time and s p a c e - especially t ime--are cer-
tainly among the most important complexity measures. It seems that
the first figure of merit given to evaluate the efficiency of an algorithm
is its running time. However, more recently it is becoming clear that
parallel time and hardware size are important complexity measures too
(see Section 6).

Another important complexity measure that goes back in some form
at least to Shannon [74] {1949) is Boolean circuit (or combinational}
complexity. Here it is convenient to assume that the function f in
question takes finite bit strings into fin{te bit strings, and the complexity
C(n) of f is the size of the smallest Boolean circuit that computesffor
all inputs of length n. This very natural measure is closely related to
computation time {see [57a], [57b], [68b]), and has a well-developed
theory in its own right {see Savage [68a]).

Another question raised by Cobham [15] is what constitutes a
"step" in a computation. This amounts to asking what is the right

An Overview of Computational Complexity 413

computer model for measuring the computation time of an algorithm.
Multitape 'Ihring machines are commonly used in the literature, but
they have artificial restrictions from the point of view of efficient
implementation of algorithms. For example, there is no compelling
reason why the storage media should be linear tapes. Why not planar
arrays of trees? Why not allow a random access memory?

In fact, quite a few computer models have been proposed since 1960.
Since real computers have random access memories, it seems natural
to allow these in the model. But just how to do this becomes a tricky
question. If the machine can store integers in one step some bound
must be placed on their size. {If the number 2 is squared 100 times
the result has 2 l°° bits, which could not be stored in all the world's
existing storage media. I I proposed charged RAM's in [19], in which
a cost {number of steps} of about log [xl is charged every time a
number x is stored or retrieved. This works but is not completely
convincing. A more popular random access model is the one used
by Aho, Hopcroft, and Ullman in [3], in which each operation involving
an integer has unit cost, but integers are not allowed to become
unreasonably large {for example, their magnitude might be bounded
by some fixed polynomial in the size of the input I. Probably the most
mathematically satisfying model is Sch6nhage's storage modification
machine [69], which can be viewed either as a '111ring machine that
builds its own storage structure or as a unit cost RAM that can only
copy, add or subtract one, or store or retrieve in one step. Sch6nhage's
machine is a slight generalization of the Kolmogorov-Uspenski machine
proposed much earlier [46] {1958), and seems to me to represent the
most general machine that could possibly be construed as doing a
bounded amount of work in one step. The trouble is that it probably
is a little too powerful. (See Section 3 under "large number multi-
plication."}

Returning to Cobham's question "what is a step;' I think what
has become clear in the last 20 years is that there is no single clear
answer. Fortunately, the competing computer models are not wildly
different in computation time. In general, each can simulate any
other by at most squaring the computation time {some of the first
arguments to this effect are in [37]}. Among the leading random access
models, there is only a factor of log computation time in question.

This leads to the final important concept developed by 1965-
the identification of the class of problems solvable in time bounded
by a polynomial in the length of the input. The distinction between
polynomial time and exponential time algorithms was made as early
as 1953 by von Neumann [90]. However, the class was not defined
formally and studied until Cobham [15] introduced the class .~ of
functions in 1964 {see Section 1). Cobham pointed out that the class
was well defined, independent of which computer model was chosen,
and gave it a characterization in the spirit of recursive function theory.
The idea that polynomial time computability roughly corresponds to

414 STEPHEN A. COOK

tractability was first expressed in print by Edmonds [27], who called
polynomial time algorithms "good algorithms." The now standard
notation P for the class of polynomial time recognizable sets of strings
was introduced later by Karp [42].

The identification of P with the tractable (or feasible) problems has
been generally accepted in the field since the early 1970's. It is
not immediately obvious why this should be true, since an algorithm
whose running time is the polynomial n 1°°° is surely not feasible,
and conversely, one whose running time is the exponential 2 °.°°°~" is
feasible in practice. It seems to be an empirical fact, however, that
naturally arising problems do not have optimal algorithms with such
running times. 3 The most notable practical algorithm that has an
exponential worst case running time is the simplex algorithm for linear
programming. Smale [75, 76] attempts to explain this by showing that,
in some sense, the average running time is fast, but it is also important
to note that Khachian [43] showed that linear programming is in P
using another algorithm. Thus, our general thesis, that P equals the
feasible problems, is not violated.

3
U p p e r B o u n d s o n T i m e

A good part of computer science research consists of designing and
analyzing enormous numbers of efficient algorithms. The important
algorithms (from the point of view of computational complexity) must
be special in some way; they generally supply a surprisingly fast way
of solving a simple or important problem. Below I list some of the
more interesting ones invented since 1960. (As an aside, it is interesting
to speculate on what are the all time most important algorithms.
Surely }he arithmetic operations +, - , *, and + on decimal numbers
are basic. After that, I suggest fast sorting and searching, Gaussian
elimination, the Euclidean algorithm, and the simplex algorithm as
candidates.)

The parameter n refers to the size of the input, and the time bounds
are the worst case time bounds and apply to a multitape Turing machine
(or any reasonable random access rnachine) except where noted.

(1) The fast Fourier t r ans form [23], requiring O(n log n) arith-
metic operations, is one of the most used algorithms in scientific com-
puting.

(2) Large number multiplication. The elementary school method
requires 0(/7/2) bit operations to multiply two n digit numbers. In 1962
Karatsuba and Ofman [41] published a method requiring only O(n 1'59)
steps. Shortly after that Toom [84] showed how to construct Boolean
circuits of size O(n ~+~) for arbitrarily small e > 0 in order to carry out

3See [31], pp. 6-9 for a discussion of this.

An Overview of Computational Complexity 415

the multiplication. I was a graduate student at Harvard at the time, and
inspired by Cobham's question "Is multiplication harder than addition?"
I was naively trying to prove that multiplication requires i2(n a) steps
on a multitape Turing machine. Toom's paper caused me considerable
surprise. With the help of Stal Aanderaa [22], I was reduced to showing
that multiplication requires f~(n log n/(log log n) 2) steps using an "on-
line" Turing machine. 4 I also pointed out in my thesis that Toom's
method can be adapted to multitape Turing machines in order to
multiply in O(n '÷E) steps, something that I am sure came as no sur-
prise to Toom.

The currently fastest asymptotic running time on a multitape Turing
machine for number multiplication is O(n log n log log n), and was
devised by Sch6nhage and Strassen [70] (1971) using the fast Fourier
transform. However, Schfnhage [69] recently showed by a complicated
argument that his storage modification machines {see Section 2) can
multiply in time O(n) {linear time!). We are forced to conclude that either
multiplication is easier than we thought or that Sch6nhage's machines
cheat.

(3) Matrix multiplication. The obvious method requires nE(2n-1)
arithmetic operations to multiply two n x n matrices, and attempts were
made to prove the method optimal in the 1950's and 1960's.
There was surprise when Strassen [81] {1969) published his method
requiring only 4.7n 2.8~ operations. Considerable work has been devoted
to reducing the exponent of 2.81, and currently the best time known
is O(n 2"496) operations, due to Coppersmith and Winograd [24]. There
is still plenty of room for progress, since the best known lower bound
is 2n2-1 (see [13]}.

(4) M a x i m u m match ings in general undi rec ted graphs. This
was perhaps the first problem explicitly shown to be in P whose
membership in P requires a difficult algorithm. Edmonds' influential
paper [27] gave the result and discussed the notion of a polynomial time
algorithm (see Section 2). He also pointed out that the simple notion
of augmenting path, which suffices for the bipartite case, does not work
for general undirected graphs.

(5) Recogni t ion of p r ime number s . The major question here is
whether this problem is in P. In other words, is there an algorithm that
always tells us whether an arbitrary n-digit input integer is prime, and
halts in a number of steps bounded by a fixed polynomial in n? Gary
Miller [53] (1976) showed that there is such an algorithm, but its validity
depends on the extended Riemann hypothesis. Solovay and Strassen
[77] devised a fast Monte Carlo algorithm (see Section 5} for prime
recognition, but if the input number is composite there is a small
chance the algorithm will mistakenly say it is prime. The best provable
deterministic algorithm known is due to Adleman, Pomerance, and
Rumley [2] and runs in time nO(~°gl°gG which is slightly worse than

4This lower bound has been slightly improved. See [56] and [64].

416 STEPHEN A. COOK

polynomial. A variation of this due to H. Cohen and H. W. Lenstra Jr.
[17] can routinely handle numbers up to 100 decimal digits in approx-
imately 45 seconds.

Recently three important problems have been shown to be in the class
P The first is linear programming, shown by Khachian [43] in 1979
(see [55] for an exposition). The second is determining whether two
graphs of degree at most d are isomorphic, shown by Luks [50] in 1980.
(The algorithm is polynomial in the number of vertices for fixed d, but
exponential in d.) The third is factoring polynomials with rational
coefficients. This was shown for polynomials in one variable by Lenstra,
Lenstra, and Lovasz [48] in 1982. It can be generalized to polynomials
in any fixed number of variables as shown by Kaltofen's result [39], [40].

I ~_~82
"luring
A w a r d

h'('h,re

4
Lower B o u n d s

The real challenge in complexity theory, and the problem that sets
the theory apart from the analysis of algorithms, is proving lower
bounds on the complexity of specific problems. There is something very
satisfying in proving that a yes-no problem cannot be solved in n, or
n ~, or 2 n steps, no matter what algorithm is used. There have been
some important successes in proving lower bounds, but the open
questions are even more important and somewhat frustrating.

All important lower bounds on computation time or space are
based on "diagonal arguments." Diagonal arguments were used by
Turing and his contemporaries to prove certain problems are not
algorithmically solvable. They were also used prior to 1960 to define
hierarchies of computable 0-1 functions, s In 1960, Rabin [60] proved
that for any reasonable complexity measure, such as computation time
or space (memory), sufficiently increasing the allowed time or space
etc. always allows more 0-1 functions to be computed. About the same
time, Ritchie in his thesis [65] defined a specific hierarchy of functions
(which he showed is nontrivial for 0-1 functions) in terms of the amount
of space allowed. A little later Rabin's result was amplified in detail
for time on mulfitape Turing machines by Hartmanis and Stearns [37],
and for space by Stearns, Hartmanis, and Lewis [78].

4 .1

N a t u r a l D e c i d a b l e P r o b l e m s
Proved In feas ib le

The hierarchy results mentioned above gave lower bounds on the
time and space needed to compute specific functions, but all such
functions seemed to be "contrived." For example, it is easy to see that
the functionf(x,y) which gives the first digit of the output of machine
x on input y after (Ix[+ [y])2 steps cannot be computed in time
(JX[-'b ry[)2. It was not until 1972, when Albert Meyer and Larry

~See, for example, Grzegorczyk [35].

An Overview of Computational Complexity 417

Stockmeyer [52] proved that the equivalence problem for regular
expressions with squaring requires exponential space and, therefore,
exponential time, that a nontrivial lower bound for general models of
computation on a "natural" problem was found {natural in the sense
of being interesting, and not about computing machines}. Shortly after
that Meyer [51] found a very strong lower bound on the time required
to determine the truth of formulas in a certain formal decidable theory
called WSIS {weak monadic second-order theory of successor}. He
proved that any computer whose running time was bounded by a fixed
number of exponentials (2n, 22", 222", etc.) could not correctly decide
WSIS. Meyer's Ph.D. student, Stockmeyer, went on to calculate [79] that
any Boolean circuit (think computer) that correctly decides the truth
of an arbitrary WSIS formula of length 616 symbols must have more
than 10123 gates. The number 10123 was chosen to be the number of
protons that could fit in the known universe. This is a very convincing
infeasibility proof!

Since Meyer and Stockmeyer there have been a large number of
lower bounds on the complexity of decidable formal theories (see
[29] and [80] for summaries}. One of the most interesting is a doubly
exponential time lower bound on the time required to decide Presburger
arithmetic (the theory of the natural numbers under addition) by Fischer
and Rabin [30]. This is not far from the best known time upper bound
for this theory, which is triply exponential [54]. The best space upper
bound is doubly exponential [29].

Despite the above successes, the record for proving lower bounds
on problems of smaller complexity is appalling. In fact, there is no
nonlinear time lower bound known on a general-purpose computation
model for any natural problem in NP (see Section 4.4), in particular,
for any of the 300 problems listed in [31]. Of course, one can prove
by diagonal arguments the existence of problems in NP requiring time
n k for any fixed k. In the case of space lower bounds, however, we do
not even know how to prove the existence of NP problems not solvable
in space O(log n) on an off-line Turing machine (see Section 4.3}. This
is despite the fact that the best known space upper bounds in many
natural cases are essentially linear in n.

4 .2
S t r u c t u r e d L o w e r B o u n d s

Although we have had little success in proving interesting lower
bounds for concrete problems on general computer models, we do
have interesting results for "structured" models. The term "structured"
was introduced by Borodin [9] to refer to computers restricted to certain
operations appropriate to the problem at hand. A simple example of
this is the problem of sorting n numbers. One can prove (see [44])
without much difficulty that this requires at least n logn comparisons,
provided that the only operation the computer is allowed to do with
the inputs is to compare them in pairs. This lower bound says nothing

418 STEPHEN A. COOK

about Turing machines or Boolean circuits, but it has been extended
to unit cost random access machines, provided division is disallowed.

A second and very elegant structured lower bound, due to Strassen
[82] (1973), states that polynomial interpolation, that is, finding the
coefficients of the polynomial of degree n-1 that passes through n given
points, requires fl(nlogn) multiplications, provided only arithmetic
operations are allowed. Part of the interest here is that Strassen's original
proof depends on Bezout's theorem, a deep result in algebraic geometry.
Very recently, Baur and Strassen [83] have extended the lower bound
to show that even the middle coefficient of the interpolating polynomial
through n points requires fl(nlogn) multiplications to compute.

Part of the appeal of all of these structured results is that the
lower bounds are close to the best known upper bounds, 6 and the
best known algorithms can be implemented on the structured models
to which the lower bounds apply. (Note that radix sort, which is
sometimes said to be linear time, really requires at least nlogn steps,
if one assumes the input numbers have enough digits so that they all
can be distinct.)

I ~ 1 ~

" l u r i n g

| ,['(' I U i1('

4 .3
T i m e - S p a c e P r o d u c t

L o w e r B o u n d s
Another way around the impasse of proving time and space lower

bounds is to prove time lower bounds under the assumption of small
space. Cobham [16] proved the first such result in 1966, when he
showed that the time-space product for recognizing n-digit perfect
squares on an "off-line" Turing machine must be f~(n2). (The same is
true of n-symbol palindromes.} Here the input is written on a two-way
read-only input tape, and the space used is by definition the number
of squares scanned by the work tapes available to the Turing machine.
Thus, if, for example, the space is restricted to O(logan) {which is more
than sufficient}, then the time must be fl(n2/log3n) steps.

The weakness in Cobham's result is that although the off-line
Turing machine is a reasonable one for measuring computation time
and space separately, it is too restrictive when time and space are con-
sidered together. For example, the palindromes can obviously
be recognized in 2n steps and constant space if two heads are allowed
to scan the input tape simultaneously. Borodin and I [10] partially
rectified the weakness when we proved that sorting n integers in the
range one to n z requires a time-space product of [2(n2/logn). The proof
applies to any "general sequential machine," which includes off-line
Turing machines with many input heads, or even random access to the
input tape. It is unfortunately crucial to our proof that sorting requires
many output bits, and it remains an interesting open question whether
a similar lower bound can be made to apply to a set recognition problem,

6See Borodin and Munro [12] for upper bounds for interpolation.

An Overview of Computational Complexity 419

such as recognizing whether all n input numbers are distinct. (Our lower
bound on sorting has recently been slightly improved in [64].)

4 . 4
N P - C o m p l e t e n e s s

The theory of NP-completeness is surely the most significant develop-
ment in computational complexity. I will not dwell on it here because
it is now well known and is the subject of textbooks. In particular, the
book by Garey and Johnson [31] is an excellent place to read about it.

The class NP consists of all sets recognizable in polynomial time by
a nondeterministic Turing machine. As far as I know, the first time a
mathematically equivalent class was defined was by James Bennett in
his 1962 Ph.D. thesis [4]. Bennett used the name "extended positive
rudimentary relations" for his class, and his definition used logical quan-
tifiers instead of computing machines. I read this part of his thesis and
realized his class could be characterized as the now familiar definition
of NP. I used the term .~+ {after Cobham's class _~Y) in my 1971
paper [18], and Karp gave the now accepted name NP to the class in
his 1972 paper [42]. Meanwhile, quite independent of the formal
development, Edmonds, back in 1965 [28], talked informally about
problems with a "good characterization," a notion essentially equivalent
to NP.

In 1971 [18], I introduced the notion of NP-complete and proved
3-satisfiably and the subgraph problem were NP-complete. A year later,
Karp [42] proved 21 problems were NP-complete, thus forcefully
demonstrating the importance of the subject. Independently of this and
slightly later, Leonid Levin [49], in the Soviet Union [now at Boston
University), defined a similar (and stronger) notion and proved six
problems were complete in his sense. The informal notion of "search
problem" was standard in the Soviet literature, and Levin called his
problems "universal search problems."

The class NP includes an enormous number of practical problems
that occur in business and industry (see [31]). A proof that an NP
problem is NP-complete is a proof that the problem is not in P {does
not have a deterministic polynomial time algorithm) unless every NP
problem is in P. Since the latter condition would revolutionize computer
science, the practical effect of NP-completeness is a lower bound. This
is why I have included this subject in the section on lower bounds.

P - C o m p l e t e n e s s
The notion of NP-completeness applies to sets, and a proof that a

set is NP-complete is usually interpreted as a proof that it is intractable.
There are, however, a large number of apparently intractable functions
for which no NP-completeness proof seems to be relevant. Leslie Valiant
[86,87] defined the notion of #P-completeness to help remedy this

420 STEPHEN A. COOK

situation. Proving that a function is #P-'complete shows that it is
apparently intractable to compute in the same way that proving a set
is NP-complete shows that it is apparently intractable to recognize;
namely, if a #P-complete function is computable in polynomial time,
then P = NP.

Valiant gave many examples of #P-complete functions, but probably
the most interesting one is the permanent of an integer matrix. The
permanent has a definition formally similar to the determinant, but
whereas the determinant is easy to compute by Gaussian elimination,
the many attempts over the past hundred odd years to find a feasible
way to compute the permanent have all failed. Valiant gave the first
convincing reason for this failure when he proved the permanent
#P-complete.

1 9 8 2

'I u r i , l g
A ~ a , d
| A ' (' | I I I'¢"

5
Probabilistic Algorithms

The use of random numbers to simulate or approximate random
processes is very natural and is well established in computing practice.
However, the idea that random inputs might be very useful in solving
deterministic combinatorial problems has been much slower in
penetrating the computer science community. Here I will restrict
attention to probabilistic {coin tossing) polynomial time algorithms that
"solve" {in a reasonable sense) a problem for which no deterministic
polynomial time algorithm is known.

The first such algorithm seems to be the one by Berlekamp [5] in
1970, for factoring a polynomial f over the field GF(p) of p elements.
Berlekamp's algorithm runs in time polynomial in the degree o f f and
log p, and with probability at least one-half it finds a correct prime
factorization off; otherwise it ends in failure. Since the algorithm can
be repeated any number of times and the failure events are all indepen-
dent, the algorithm in practice always factors in a feasible amount of
time.

A more drastic example is the algorithm for prime recognition
due to Solovay and Strassen [77] (submitted in 1974). This algorithm
runs in time polynomial in the length of the input m, and outputs
either "prime" or "composite." If m is in fact prime, then the output
is certainly "prime," but if m is composite, then with probability at
most one-half the answer may also be "prime:' The algorithm may
be repeated any number of times on an input m with independent
results. Thus if the answer is ever "composite," the user knows m
is composite; if the answer is consistently "prime" after, say, 100
runs, then the user has good evidence that m is prime, since any fixed
composite m would give such results with tiny probability (less than
2-,oo).

Rabin [61] developed a different probabilistic algorithm with proper-
ties similar to the one above, and found it to be very fast on computer

An Overview of Computational Complexity 421

trials. The number 2400 -- 593 was identified as [probably) prime within
a few minutes.

One interesting application of probabilistic prime testers was pro-
posed by Rivest, Shamir, and Adleman [67a] in their landmark paper
on public key cryptosystems in 1978. Their system requires the genera-
tion of large (100 digit) random primes. They proposed testing random
100 digit numbers using the Solovay-Strassen method until one was
found that was probably prime in the sense outlined above. Actually
with the new high-powered deterministic prime tester of Cohen and
Lenstra [17] mentioned in Section 3, once a random 100 digit "probably
prime" number was found it could be tested for certain in about 45
seconds, if it is important to know for certain.

The class of sets with polynomial time probabilistic recognition
algorithms in the sense of Solovay and Strassen is known as R (or
sometimes RP) in the literature. Thus a set is in R if and only if it has
a probabilistic recognition algorithm that always halts in polynomial
time and never makes a mistake for inputs not in R, and for each input
in R it outputs the right answer for each run with probability at least
one-half. Hence the set of composite numbers is in R, and in general
P _C R C NP. There are other interesting examples of sets in R not
known to be in P. For example, Schwartz [71] shows that the set of non-
singular matrices whose entries are polynomials in many variables is
in R. The algorithm evaluates the polynomials at random small integer
values and computes the determinant of the result. (The determinant
apparently cannot feasibly be computed directly because the poly-
nomials computed would have exponentially many terms in general.}

It is an intriguing, open question whether R--P. It is tempting to
conjecture yes on the philosophical grounds that random coin tosses
should not be of much use when the answer being sought is a well-
defined yes or no. A related question is whether a probabilistic algorithm
{showing a problem is in R) is for all practical purposes as good as a
deterministic algorithm. After all, the probabilistic algorithms can be
run using the pseudorandom number generations available on most
computers, and an error probability of 2 -l°° is negligible. The catch is
that pseudorandom number generators do not produce truly random
numbers, and nobody knows how well they will work for a given
probalistic algorithm. In fact, experience shows they seem to work well.
But if they always work well, then it follows that R = P, because
pseudorandom numbers are generated deterministically so true random-
ness would not help after all. Another possibility is to use a physical
process such as thermal noise to generate random numbers. But it is
an open question in the philosophy of science how truly random nature
can be.

Let me close this section by mentioning an interesting theorem of
Adlemen [1] on the class R. It is easy to see [57b] that if a set is in P,
then for each n there is a Boolean circuit of size bounded by a fixed
polynomial in n which determines whether an arbitrary string of length

422 STEPHEN A. COOK

n is in the set. What Adleman proved is that the same is true for the
class R. Thus, for example, for each n there is a small "computer circuit"
that correctly and rapidly tests whether n digit numbers are prime. The
catch is that the circuits are not uniform in n, and in fact for the case
of 100 digits it may not be feasible to figure out how to build the circuit. 7

6
Synchronous

Parallel Computation
With the advent of VLSI technology in which one or more processors

can be placed on a quarter-inch chip, it is natural to think of a future
composed of many thousands of such processors working together
in parallel to solve a single problem. Although no very large general-
purpose machine of this kind has been built yet, there are such pro-
jects under way (see Schwartz [72]). This motivates the recent develop-
ment of a very pleasing branch of computat ion complexity: the theory
of large-scale synchronous parallel computation, in which the number
of processors is a resource bounded by a parameter H(n) (H is for
hardware) in the same way that space is bounded by a parameter S(n)
in sequential complexity theory. Typically H(n) is a fixed polynomial
in n.

Quite a number of parallel computation models have been proposed
{see [21] for a review), just as there are many competing sequential
models (see Section 2). There are two main contenders, however. The
first is the class of shared m e m o r y models in which a large number
of processors communicate via a random access memory that they hold
in common. Many parallel algorithms have been published for such
models,, since real parallel machines may well be like this when they
are built. However, for the mathematical theory these models are not
very satisfactory because too much of their detailed specification is
arbitrary: How are read and write conflicts in the common memory
resolved? What basic operations are allowed for each processor? Should
one charge log H(n) t ime units to access common memory?

Hence I prefer the cleaner model discussed by Borodin [8] (1977),
in which a parallel computer is a uniform family (B,/ of acyclic
Boolean circuits, such that Bn has n inputs (and hence takes care of
those input strings of length n). Then H(n) (the amount of hardware)
is simply the number of gates in B,, and T(n) (the parallel computat ion
time) is the depth of the circuit Bn (i.e., length of the longest path from
an ' input to an output). This model has the practical justification that
presumably all real machines (including shared m em o ry machines)
are built f rom Boolean circuits. Furthermore, the min imum Boolean
size and depth needed to compute a function is a natural mathematical
problem and was considered well before the theory of parallel
computat ion was around.

ZFor more theory on probabilistic computation, see Gill [32].

I (_) 8 2

" l u r i n g
A~v~lHI

I,L'('I|I rL)

An Overview of Computational Complexity 423

Fortunately for the theory, the minimum values of hardware H(n)
and parallel time T(n) are not widely different for the various competing
parallel computer models. In particular, there is an interesting general
fact true for all the models, first proved for a particular model by Pratt
and Stockmeyer [58] in 1974 and called the "parallel computation thesis"
in [33]; namely, a problem can be solved in time polynomial in T(n)
by a parallel machine {with unlimited hardware} if and only if it can
be solved in space polynomial in T(n) by a sequential machine {with
unlimited time}.

A basic question in parallel computation is: Which problems can
be solved substantially faster using many processors rather than
one processor? Nicholas Pippenger [57a] formalized this question by
defining the class {now called NC for "Nick's class"} of problems
solvable ultra fast [time T(n) = (log n) °(~)] on a parallel computer with
a feasible [H(n) = n °"/] amount of hardware. Fortunately, the class
NC remains the same, independent of the particular parallel computer
model chosen, and it is easy to see that NC is a subset of the class
FP of functions computable sequentially in polynomial time. Our
informal question can then be formalized as follows: Which problems
in FP are also in FC?

It is conceivable {though unlikely} that NC = FP, since to prove NC
¢: FP would require a breakthrough in complexity theory {see the end
of Section 4.1 I. Since we do not know how to prove a function f i n FP
is not in NC, the next best thing is to prove that f i s log space-complete
for FP. This is the analog of proving a problem is NP-complete, and has
the practical effect of discouraging efforts for finding super fast parallel
algorithms for f This is because if f is log space-complete for FP and
f is in NC, then FP = NC which would be a big surprise.

Quite a bit of progress has been made in classifying problems
in FP as to whether they are in NC or log space-complete for FP {of
course, they may be neither}. The first example of a problem complete
for P was presented in 1973 by me in [20], although I did not state the
result as a completeness result. Shortly after that Jones and Laaser [38]
defined this notion of completeness and gave about five examples,
including the emptiness problem for context-free grammers. Probably
the simplest problem proved complete for FP is the so-called circuit
value problem [47]: given a Boolean circuit together with values for
its inputs, find the value of the output. The example most interesting
to me, due to Goldschlager, Shaw, and Staples [34], is finding the
{parity of I maximum flow through a given network with {large} positive
integer capacities on its edges. The interest comes from the subtlety
of the completeness proof. Finally, I should mention that linear pro-
gramming is complete for FP. In this case the difficult part is showing
that the problem is in P {see [4311, after which the completeness proof
[26] is straightforward.

Among the problems known to be in NC are the four arithmetic
operations (+, - , *, +) on binary numbers, sorting, graph connectiv-

424 STEPHEN A. COOK

ity, matrix operations {multiplication, inverse, determinant, rank),
polynomial greatest common divisors, context-free languages, and
finding a minimum spanning forest in a graph (see [11], [21], [63], [67b]).
The size of a maximum matching for a given graph is known [11]
to be in "random" NC {NC in which coin tosses are allowed), although
it is an interesting open question of whether finding an actual maximum
matching is even in random NC Results in [89] and [67b] provide general
methods for showing problems are in NC.

The most interesting problem in FP not known either to be complete
for FP or in {random) NC is finding the greatest common divisor of two
integers. There are many other interesting problems that have yet to
be classified, including finding a maximum matching or a maximal
clique in a graph (see [88]).

'I urillg~

l.e('| ii 111. •

7
The Future

Let me say again that the field of computational complexity is large
and this overview is brief. There are large parts of the subject that
I have left out altogether or barely touched on. My apologies to the
researchers in those parts.

One relatively new and exciting part, called "computational infor-
mation theory," by Yao [92], builds on Shannon's classical informa-
tion theory by considering information that can be accessed through
a feasible computation. This subject was sparked largely by the papers
by Diffie and Hellman [25] and Rivest, Shamir, and Adleman [67a] on
public key cryptosystems, although its computational roots go back to
Kolmogorov [45] and Chaitin [14a], [14b], who first gave meaning to
the notion of a single finite sequence being "random," by using the
theory of computation. An interesting idea in this theory, considered
by Shamir [73] and Blum and Micali [7], concerns generating pseudo-
random sequences in which future bits are provably hard to predict
in terms of past bits. Yao [92] proves that the existence of such sequences
would have positive implications about the deterministic complexity
of the probabilistic class R {see Section 51. In fact, computational
information theory promises to shed light on the role of randomness
in computation.

In addition to computational information theory we can expect
interesting new results on probabilistic algorithms, parallel computa-
tion, and (with any luck) lower bounds. Concerning lower bounds,
the one breakthrough for which I see some hope in the near future
is showing that not every problem in P is solvable in space O(log n),
and perhaps also P -~ N C In any case, the field of computational com-
plexity remains very vigorous, and I look forward to seeing what the
future will bring.

An Overview of Computational Complexity 4.25

Acknowledgments
I am grateful to m y complexi ty colleagues at Toronto for m a n y

helpful co m m en t s and suggestions, especially Allan Borodin, Joachim
von zur Gathen, Silvio Micali, and Charles Rackoff.

References
1. Adleman, L. Two theorems on random polynomial time. Proc. 19th IEEE

Symp. on Foundations of Computer Science. IEEE Computer Society, Los
Angeles (1978), 75-83.

2. Adleman, L., Pomerance, C., and Rumley, R. S. On distinguishing prime
numbers from composite numbers. Annals of Math 117 [January 1983),
173-206.

3. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

4. Bennett, J. H. On Spectra. Doctoral dissertation, Department of
Mathematics, Princeton University, 1962.

5. Berlekamp, E. R. Factoring polynomials over large finite fields. Math.
Comp. 24 (1970}, 713-735.

6. Blum, M. A machine independent theory of the complexity of recur-
sire functions. JACM 14, 2 [April 1967), 322-336.

7. Blum, M., and Micali, S. How to generate cryptographically strong se-
quences of pseudo random bits. Proc. 23rd IEEE Syrup. on Foundations
of Computer Science. IEEE Computer Society, Los Angeles (1982), 112-117.

8. Borodin, A. On relating time and space to size and depth. SIAMJ. Comp.
6 (1977), 733-744.

9. Borodin, A. Structured vs. general models in computational complexi-
ty. In Logic and Algorithmic, Monographie no. 30 de L'Enseignement
Mathematique Universit~ de Gen&ve, 1982.

10. Borodin, A., and Cook, S. A time-space tradeoff for sorting on a general
sequential model of computation. SIAMJ. Comput. 11 (1982), 287-297.

11. Borodin, A., von zur Gathen, J., and Hopcroft, J. Fast parallel matrix
and GCD computations. 23rd IEEE Syrup. on Foundations of Computer
Science. IEEE Computer Society, Los Angeles (1982), 65-71.

12. Borodin, A., and Munro, I. The Computational Complexity of Algebraic
and Numeric Problems. Elsevier, New York, 1975.

13. Brockett, R. W., and Dobkin, D. On the optimal evaluation of a set of
bilinear forms. Linear Algebra and Its Applications 19 [1978}, 207-235.

14a. Chaitin, G. J. On the length of programs for computing finite binary
sequences.JACM 13, 4 [October 1966), 547-569;JACM 16, 1 [January
1969}, 145-159,

14b. Chaitin, G. J. A theory of program size formally identical to informa-
tional theory. JACM 22, 3 (July 1975), 329-340.

15. Cobham, A. The intrinsic computational difficulty of functions. Proc.
1964 International Congress for Logic, Methodology, and Philosophy of
Sciences. Y. Bar-Hellel, Ed., North Holland, Amsterdam, 1965, 24-30.

16. Cobham, A. The recognition problem for the set of perfect squares. IEEE
Conference Record Seventh SWAT [1966}, 78-87.

426 STEPHEN A. COOK

17. Cohen, H., and Lenstra, H. W., Jr. Primarily testing and Jacobi sums.
Report 82-18, University of Amsterdam, Dept. of Math., 1982.

18. Cook, S. A. The complexity of theorem proving procedures. Proc. 3rd
ACM Syrup. on Theory of Computing. Shaker Heights, Ohio [May 3-5,
1971}, 151-158.

19. Cook, S. A. Linear time simulation of deterministic two-way pushdown
automata. Proc. IFIP Congress 71 {Theoretical Foundations]. North
Holland, Amsterdam, 1972, 75-80.

20. Cook, S. A. An observation on time-storage tradeoff. JCSS 9 {1974),
308-316. Originally in Proc. 5th ACM Syrup. on Theory of Computing,
Austin, TX (April 30-May 2 1973), 29-33.

21. Cook, S. A. Towards a complexity theory of synchronous parallel com-
putation. L'Enseignement Mathematique XXVII (1981), 99-124.

22. Cook, S. A., and Aanderaa, S. O. On the minimum computation time
of functions. Trans. AMS 142 (1969), 291-314.

23. Cooley, J. M., and 'Ihkey, J. W. An algorithm for the machine calcula-
tion of complex Fourier series. Math. Comput. 19 (1965}, 297-301.

24. Coppersmith, D., and Winograd, S. On the asymptomatic complexity
of matrix multiplication. SIAMJ. Comp. 11 (1982), 472-492.

25. Diffie, W., and Hellman, M. E. New direction in cryptography. IEEE
Trans. on Inform. Theory IT-22, 6 (1976), 644-654.

26. Dobkin, D., Lipton, R. J., and Reiss, S. Linear programming is log-space
hard for R Inf. Processing Letters 8 (1979), 96-97.

27. Edmonds, J. Paths, trees, flowers. Canad. J. Math. 17 (1965), 449-67.
28. Edmonds, J. Minimum partition of a matroid into independent subsets.

J. Res. Nat. Bur. Standards Sect. B, 69 (1965), 67-72.
29. Ferrante, J., and Rackoff, C. W. The Computational Complexity of

Logical Theories. Lecture Notes in Mathematics. #718, Springer Verlag,
New York, 1979.

30. Fischer, M. J., and Rabin, M. O. Super-exponential complexity of
Presburger arithmetic. In Complexity of Computation. SIAM-AMS Proc.
7, R. Karp, Ed., 1974, 27-42.

31. Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide
to the Theory ofNP-Completeness. W. H. Freeman, San Francisco, 1979.

32. Gill, J. Computational complexity of probabilistic Turing machines.
SIAMJ. Comput. 6 (1977), 675-695.

33. Goldschlager, L. M. Synchronous Parallel Computation. Doctoral disser-
tation, Dept. of Computer Science, Univ. of Toronto, 1977. See alsoJACM
29, 4 (October 1982), 1073-1086.

34. Goldschlager, L. M., Shaw, R. A., and Staples, J. The maximum flow
problem is log space complete for R Theoretical Computer Science 21
(1982), 105-111.

35. Grzegorczyk, A. Some classes of recursive functions. Rozprawy Mate-
mtyezne, 1953.

36. Hartmanis, J. Observations about the development of theoretical com-
puter science. Annals Hist. Comput. 3, 1 (Jan. 1981), 42-51.

37. Hartmanis, J., and Stearns, R. E. On the computational complexity of
algorithms. Trans. AMS 117 (19651, 285-306.

38. Jones, N. D., and Laaser, W. T. Complete problems for deterministic
polynomial time. Theoretical Computer Science 3 11977}, 105-427.

'1 u r i ~ l g

A w a H I

I . e t ' h l l e

An Overview of Computational Complexity 427

39. Kaltofen, E. A polynomial reduction from multivariate to bivariate
integer polynomial factorization. Proc. 14th ACM Syrup. in Theory Comp.,
San Francisco, CA {May 5-7 1982), 261-266.

40. Kaltofen, E. A polynomial-time reduction from bivariate to univariate
integral polynomial factorization. Proc. 23rd 1EEE Syrup. on Foundations
of Computer Science. IEEE Computer Society, Los Angeles {1982), 57-64.

41. Karatsuba, A., and Ofman, Yu. Multiplication of multidigit numbers
on automata. Doklady Akad. Nauk 145, 2 {1962), 293-294. Translated
in Soviet Phys. Dohlady 77 {1963}, 595-596.

42. Karp, R. M. Reducibility among combinatorial problems. In: Com-
plexity of Computer Computations. R. E. Miller and J. W. Thatcher, Eds.,
Plenum Press, New York, 1972, 85-104.

43. Khachian, L. G. A polynomial time algorithm for linear programming.
Doklady Akad. Nauh SSSR. 244, 5{1979 I, 1093-96. Translated in Soviet
Math. Doklady 20, 191-194.

44. Knuth, D. E. The Art of Computer Programming, vol. 3. Sorting and
Searching. Addison-Wesley, Reading, MA, 1973.

45. Kolmogorov, A. N. Three approaches to the concept of the amount of
information. Probl. Pered. lnf {Probl. of lnf Transm.} i {1965).

46. Kolmogorov, A. N., and Uspenski, V. A. On the definition of an
algorithm, Uspehi Mat. Nauh. 13 {1958), 3-28: AMS Transl. 2nd ser. 29
{1963}, 217-245.

47. Ladner, R. E. The circuit value problem is log space complete for P.
SIGACTNews 7, 1 [1975), 18-20.

48. Lenstra, A. K., Lenstra, H. W., and Lovasz, L. Factoring polynomials
with rational coefficients. Report 82-05, University of Amsterdam, Dept.
of Math., 1982.

49. Levin, L. A. Universal search problems. Problemy Peredaci lnformacii 9
{1973), 115-116. Translated in Problems of Information Transmission 9,
265-266.

50. Luks, E. M. Isomorphism of graphs of bounded valence can be tested
in polynomial time. Proc. 21st IEEE Syrup. on Foundations of Computer
Science. IEEE Computer Society, Los Angeles {1980), 42-49.

51. Meyer, A. R. Weak monadic second-order theory of successor is not
elementary-recursive. Lecture Notes in Mathematics 453. Springer Verlag,
New York, 1975, 132-154.

52. Meyer, A. R., and Stockmeyer, L. J. The equivalence problem for regular
expressions with squaring requires exponential space. Proc. 13th IEEE
Symp. on Switching and Automata Theory 11972}, 125-129.

53. Miller, G. L. Riemann's hypothesis and tests for primality. J. Comput.
System Sci. 13 {1976), 300-317.

54. Oppen, D. C. A 222p~ upper bound on the complexity of Presburger
arithmetic. J. Comput. Syst. Sci. 16 {1978}, 323-332.

55. Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

56. Paterson, M. S., Fischer, M. J., and Meyer, A. R. An improved overlap
argument for on-line multiplication. SIAM-AMS Proc. 7, Amer. Math.
Soc., Providence, 1974, 97-111.

57a. Pippenger, N. On simultaneous resource bounds {preliminary version).
Proc. 20th IEEE Syrup. on Foundations of Computer Science. IEEE Com-
puter Society, Los Angeles [1979}, 307-311.

428 STEPHEN A. COOK

57b. Pippenger, N. J., and Fischer, M. J. Relations among complexity
measures. JACM 26, 2 (April 1979}, 361-381.

58. Pratt, V. R., and Stockmeyer, L. J. A characterization of the power of
vector machines.J. Comput. System Sci. 12 (19761, 198-221. Originally
in Proc. 6th ACM Syrup. on Theory of Computing, Seattle, WA {April
30-May 2, 1974), 122-134.

59. Rabin, M. O. Speed of computation and classification of recursive sets.
Third Convention Sci. Soc., Israel, 1959, 1-2.

60. Rabin, M. O. Degree of difficulty of computing a function and a par-
tial ordering of recursive sets. Tech. Rep. No. 1, O.N.R., Jerusalem, 1950.

61. Rabin, M. O. Probabilistic algorithms. In Algorithms and Complexity, New
Directions and Recent Trends, J. F. Traub, Ed., Academic Press, New York,
1976, 29-39.

62. Rabin, M. O. Complexity of computations. Comm. ACM 20, 9 {Sep-
tember 1977}, 625-633.

63. Reif, J. H. Symmetric complementation. Proc. 14th ACM Syrup. on Theory
of Computing, San Francisco, CA (May 5-7, 1982), 201-214.

64. Reisch, S., and Schnitger, G. Three applications of Kolmorgorov com-
plexity. Proc. 23rd IEEE Syrup. on Foundations of Computer Science. IEEE
Computer Society, Los Angeles (1982), 45-52.

65. Ritchie, R. W. Classes of Recursive Functions of Predictable Complexity.
Doctoral Dissertation, Princeton University, 1960.

66. Ritchie, R. W. Classes of predictably computable functions. Trans. AMS
106 (1963), 139-173.

67a. Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining digital
signatures and public-key cryptosystems. Comm. ACM 21, 2 (February
1978), 120-126.

67b. Ruzzo, W. L. On uniform circuit complexity.]. Comput. System Sci. 22
(1981), 365-383.

68a. Savage,]. E. The Complexity of Computing. Wiley, New York, 1976.
68b. Schnorr, C. P. The network complexity and the 'Ihring machine com-

plexity of finite functions. Acta Informatica 7 (1976), 95-107.
69. SchSnhage, A. Storage modification machines. SIAM]. Comp. 9 {1980),

490-508.
70. Sch6nhage, A., and Strassen. V. Schnelle Multiplication grosser Zahlen.

Computing 7 {197!), 281-292.
71. Schwartz, J. T. Probabilistic algorithms for verification of polynomial

identities.]ACM 27, 4 (October 1980}, 701-717.
72. Schwartz, J. T. Ultracomputers. ACM Trans. on Prog. Languages and

Systems 2, 4 (October 1980), 484-521.
73. Shamir, A. On the generation of cryptographically strong pseudo ran-

dom sequences. 8th Int. Colloquium on Automata, Languages, and Pro-
gramming (July 1981}. Lecture Notes in Computer Science 115. Springer
Verlag, New York, 544-550.

74. Shannon, C. E. The synthesis of two terminal switching circuits. BST]
28 (1949), 59-98.

75. Smale, S. On the average speed of the simplex method of linear pro-
gramming. Preprint, 1982.

76. Smale, S. The problem of the average speed of the simplex method.
Preprint, 1982.

1 9 9 2
' l u r i ng
Award
[t 'dlJl~"

An Overview of Computational Complexity 429

77. Solovay, R., and Strassen, V. A fast monte-carlo test for primality. SlAM
J. Comput. 6 (1977), 84-85.

78. Stearns, R. E., Hartmanis, J., and Lewis, P. M. II Hierarchies of memory
limited computations. 6th IEEE Syrup. on Switching Circuit Theory and
Local Design (1965), 179-190.

79. Stockmeyer, L. J. The complexity of decision problems in automata
theory and logic. Doctoral Thesis, Dept. of Electrical Eng., MIT, Cam-
bridge, MA., 1974; Report TR-133, MIT, Laboratory for Computing
Science.

80. Stockmeyer, L. J. Classifying the computational complexity of problems.
Research Report RC 7606 (1979), Math. Sciences Dept., IBM TJ. Wat-
son Research Center, Yorktown Heights, N.Y.

81. Strassen, V. Gaussian elimination is not optimal. Num. Math. 13 (1969),
354-356.

82. Strassen, V. Die Berechnungskomplexitfit von elementarsymmetrischen
Funktionen und yon Interpolationskoeffizienten. Numer. Math. 20
(1973), 238-251.

83. Baur, W., and Strassen, V. The complexity of partial derivatives.
Preprint, 1982.

84. Toom, A. L. The complexity of a scheme of functional elements realiz-
ing the multiplication of integers. Doklady Akad. Nauk. SSSR 150, 3
{1963), 496-498. Translated in Souiet Math. Doklady 3 (1963), 714-716.

85. Turing, A. M. On computable numbers with an application to the Ent-
scheidnungsproblem. Proc. London Math. Soc. ser. 2, 42 (1963-7),
230-265. A correction, ibid. 43 (1937}, 544-546.

86. Valiant, L. G. The complexity of enumeration and reliability problems.
SLAM]. Comput. 8 (1979), 189-202.

87. Valiant, L. G. The complexity of computing the permanent. Theoretical
Computer Science 8 {1979}, 189-202.

88. Valiant, L. G. Parallel computation. Proc. 7th IBM]apart Symp. Academic
6 Scientific Programs, IBM Japan, Tokyo (1982).

89. Valiant, L. G., Skyum, S., Berkowitz, S., and Rackoff, C. Fast parallel
computation on polynomials using few processors. Preprint
(Preliminary version in Springer Lecture Notes in Computer Science 118
(1981), 132-139.

90. von Neumann, J. A certain zero-sum two-person game equivalent to
the optimal assignment problem. Contributions to the Theory of Games
II. H. W. Kahn and A. W. Tucker, Eds. Princeton Univ. Press, Princeton,
N, 1953.

91. Yamada, H. Real time computation and recursive functions not real-
time computable. IRE Transactions on Electronic Computers EC-11 (1962),
753-760.

92. Yao, A. C. Theory and applications of trapdoor functions {extended
abstract). Proc. 23rd IEEE Syrup. on Foundations of Computer Science. 1EEE
Computer Society, Los Angeles (1982), 80-91.

Categories a n d S u b j e c t D e s c r i p t o r s :
E1.2 [Computat ion by Abstract Devices]: Modes of Computation--
parallelism; probabilistic computation; E2.1 [Analysis of Algorithms and

430 STEPHEN A. COOK

Problem Complexity]: Numerical Algorithms and Problems--com-
putations on polynomials; G.3 [Mathematics of Computing]: Probability
and Statistics: probabilistic algorithms

1 9 8 2

' l u r i n g
A ~lr;I I 'd

I . cdu r { "

G e n e r a l Terms:
Algorithms, Theory

A d d i t i o n a l Key Words a n d Phrases :
Fast Fourier transform, Monte Carlo algorithm, NP-completeness

An Overview of Computational Complexity 431

