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The 1982 Taring Award was presented to Stephen Arthur Cook, Professor 
of Computer Science at the University of Toronto, at the ACM Annual 
Conference in Dallas on October 25, 1982. The award is the Association's 
foremost recognition of technical contributions to the computing community. 

The citation of Cook's achievements noted that "Dr. Cook has advanced 
our understanding of the complexity of computation in a significant and 
profound way. His seminal paper, The Complexity of Theorem Proving 
Procedures, presented at the 1971 ACM SIGACT Symposium on the Theory 
of Computing, laid the foundations for the theory of NP-completeness. 
The ensuing exploration of the boundaries and nature of the NP-complete 
class of problems has been one of the most active and important research 
activities in computer science for the last decade. 

Cook is well known for his influential results in fundamental areas of 
computer science. He has made significant contributions to complexity theory, 
to time-space tradeoffs in computation, and to logics for programming 
languages. His work is characterized by elegance and insights and has 
illuminated the very nature of computation." 

During 1970-1979, Cook did extensive work under grants from the 
National Research Council. He was also an E. W. R. Staecie Memorial 
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Fellowship recipient for 1977-1978. The author of numerous landmark 
papers, he is currently involved in proving that no "good" algorithm exists 
for NP-complete problems. 

The ACM Taring Award memorializes A. M. Taring, the English 
mathematician who made major contributions to the computing sciences. 

An historical overview of computational complexity is presented. Emphasis is on 
the fundamental issues of defining the intrinsic computational complexity of a 
problem and proving upper and lower bounds on the complexity of problems. 
Probabilistic and parallel computation are discussed. 

This is the second Turing Award lecture on Computational Complexity. 
The first was given by Michael Rabin in 1976.1 In reading Rabin's 
excellent article [62] now, one of the things that strikes me is how much 
activity there has been in the field since. In this brief overview I want 
to mention what to me are the most important and interesting results 
since the subject began in about 1960. In such a large field the choice 
of topics is inevitably somewhat personal; however, I hope to include 
papers which, by any standards, are fundamental. 

1 
Early Papers 

The prehistory of the subject goes back, appropriately, to Alan 
Turing. In his 1937 paper, On computable numbers with an application 
to the Entscheidungsproblem [85], 'Ihring introduced his famous Turing 
machine, which provided the most convincing formalization (up to that 
time) of the notion of an effectively {or algorithmically) computable 
function. Once this notion was pinned down precisely, impossibility 
proofs for computers were possible. In the same paper Turing proved 
that no algorithm (i.e., Turing machine) could, upon being given an 
arbitrary formula of the predicate calculus, decide, in a finite number 
of steps, whether that formula was satisfiable. 

After the theory explaining which problems can and cannot be 
solved by computer was well developed, it was natural to ask about 
the relative computational difficulty of computable functions. This is 
the subject matter of computational complexity. Rabin [59, 60] was one 
of the first persons 11960) to address this general question explicitly: 
what does it mean to say that f is more difficult to compute than g? 
Rabin suggested an axiomatic framework that provided the basis for 
the abstract complexity theory developed by Blum [6] and others. 

A second early (1965) influential paper was On the computational 
complexity of algorithms by J. Hartmanis and R. E. Stearns [37]. 2 This 
paper was widely read and gave the field its title. The important 

1Michael Rabin and Dana Scott shared the Turing Award in 1976. 

2See Hartmanis [36] for some interesting reminiscences. 
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notion of complexity measure defined by the computation time on 
multitape Turing machines was introduced, and hierarchy theorems 
were proved. The paper also posed an intriguing question that is still 
open today. Is any irrational algebraic number (such as x/-z) computable 
in real time, that is, is there a 'Ihring machine that prints out the 
decimal expansion of the number at the rate of one digit per 100 steps 
forever? 

A third founding paper (1965) was The intrinsic computational 
difficulty of functions by Alan Cobham [15]. Cobham emphasized the 
word "intrinsic," that is, he was interested in a machine-independent 
theory. He asked whether multiplication is harder than addition, and 
believed that the question could not be answered until the theory was 
properly developed. Cobham also defined and characterized the 
important class of functions he called .~Y: those functions on the natural 
numbers computable in time bounded by a polynomial in the decimal 
length of the input. 

Three other papers that influenced the above authors as well as other 
complexity workers {including myself} are Yamada [91], Bennett [4], and 
Ritchie [66]. It is interesting to note that Rabin, Stearns, Bennett, and 
Ritchie were all students at Princeton at roughly the same time. 
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2 
Early Issues and Concepts 

Several of the early authors were concerned with the question: What 
is the right complexity measure? Most mentioned computation time or 
space as obvious choices, but were not convinced that these were the 
only or the right ones. For example, Cobham [15] suggested " . . .  some 
measure related to the physical notion of work [may] lead to the most 
satisfactory analysis:' Rabin [60] introduced axioms which a complexity 
measure should satisfy. With the perspective of 20 years experience, 
I now think it is clear that time and s p a c e -  especially t ime--are cer- 
tainly among the most important complexity measures. It seems that 
the first figure of merit given to evaluate the efficiency of an algorithm 
is its running time. However, more recently it is becoming clear that 
parallel time and hardware size are important complexity measures too 
(see Section 6). 

Another important complexity measure that goes back in some form 
at least to Shannon [74] {1949) is Boolean circuit (or combinational} 
complexity. Here it is convenient to assume that the function f in 
question takes finite bit strings into fin{te bit strings, and the complexity 
C(n) of f is the size of the smallest Boolean circuit that computesffor  
all inputs of length n. This very natural measure is closely related to 
computation time {see [57a], [57b], [68b]), and has a well-developed 
theory in its own right {see Savage [68a]). 

Another question raised by Cobham [15] is what constitutes a 
"step" in a computation. This amounts to asking what is the right 
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computer model for measuring the computation time of an algorithm. 
Multitape 'Ihring machines are commonly used in the literature, but 
they have artificial restrictions from the point of view of efficient 
implementation of algorithms. For example, there is no compelling 
reason why the storage media should be linear tapes. Why not planar 
arrays of trees? Why not allow a random access memory? 

In fact, quite a few computer models have been proposed since 1960. 
Since real computers have random access memories, it seems natural 
to allow these in the model. But just how to do this becomes a tricky 
question. If the machine can store integers in one step some bound 
must be placed on their size. {If the number 2 is squared 100 times 
the result has 2 l°° bits, which could not be stored in all the world's 
existing storage media. I I proposed charged RAM's in [19], in which 
a cost {number of steps} of about log [xl is charged every time a 
number x is stored or retrieved. This works but is not completely 
convincing. A more popular random access model is the one used 
by Aho, Hopcroft, and Ullman in [3], in which each operation involving 
an integer has unit cost, but integers are not allowed to become 
unreasonably large {for example, their magnitude might be bounded 
by some fixed polynomial in the size of the input I. Probably the most 
mathematically satisfying model is Sch6nhage's storage modification 
machine [69], which can be viewed either as a '111ring machine that 
builds its own storage structure or as a unit cost RAM that can only 
copy, add or subtract one, or store or retrieve in one step. Sch6nhage's 
machine is a slight generalization of the Kolmogorov-Uspenski machine 
proposed much earlier [46] {1958), and seems to me to represent the 
most general machine that could possibly be construed as doing a 
bounded amount of work in one step. The trouble is that it probably 
is a little too powerful. (See Section 3 under "large number multi- 
plication."} 

Returning to Cobham's question "what is a step;' I think what 
has become clear in the last 20 years is that there is no single clear 
answer. Fortunately, the competing computer models are not wildly 
different in computation time. In general, each can simulate any 
other by at most squaring the computation time {some of the first 
arguments to this effect are in [37]}. Among the leading random access 
models, there is only a factor of log computation time in question. 

This leads to the final important concept developed by 1965-  
the identification of the class of problems solvable in time bounded 
by a polynomial in the length of the input. The distinction between 
polynomial time and exponential time algorithms was made as early 
as 1953 by von Neumann [90]. However, the class was not defined 
formally and studied until Cobham [15] introduced the class .~ of 
functions in 1964 {see Section 1). Cobham pointed out that the class 
was well defined, independent of which computer model was chosen, 
and gave it a characterization in the spirit of recursive function theory. 
The idea that polynomial time computability roughly corresponds to 
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tractability was first expressed in print by Edmonds [27], who called 
polynomial time algorithms "good algorithms." The now standard 
notation P for the class of polynomial time recognizable sets of strings 
was introduced later by Karp [42]. 

The identification of P with the tractable (or feasible) problems has 
been generally accepted in the field since the early 1970's. It is 
not immediately obvious why this should be true, since an algorithm 
whose running time is the polynomial n 1°°° is surely not feasible, 
and conversely, one whose running time is the exponential 2 °.°°°~" is 
feasible in practice. It seems to be an empirical fact, however, that 
naturally arising problems do not have optimal algorithms with such 
running times. 3 The most notable practical algorithm that has an 
exponential worst case running time is the simplex algorithm for linear 
programming. Smale [75, 76] attempts to explain this by showing that, 
in some sense, the average running time is fast, but it is also important 
to note that Khachian [43] showed that linear programming is in P 
using another algorithm. Thus, our general thesis, that P equals the 
feasible problems, is not violated. 

3 
U p p e r  B o u n d s  o n  T i m e  

A good part of computer science research consists of designing and 
analyzing enormous numbers of efficient algorithms. The important 
algorithms (from the point of view of computational complexity) must 
be special in some way; they generally supply a surprisingly fast way 
of solving a simple or important problem. Below I list some of the 
more interesting ones invented since 1960. (As an aside, it is interesting 
to speculate on what are the all time most important algorithms. 
Surely }he arithmetic operations +, - ,  *, and + on decimal numbers 
are basic. After that, I suggest fast sorting and searching, Gaussian 
elimination, the Euclidean algorithm, and the simplex algorithm as 
candidates.) 

The parameter n refers to the size of the input, and the time bounds 
are the worst case time bounds and apply to a multitape Turing machine 
(or any reasonable random access rnachine) except where noted. 

(1) The fast Fourier  t r ans form [23], requiring O(n log n) arith- 
metic operations, is one of the most used algorithms in scientific com- 
puting. 

(2) Large number  multiplication. The elementary school method 
requires 0(/7/2) bit operations to multiply two n digit numbers. In 1962 
Karatsuba and Ofman [41] published a method requiring only O(n 1'59) 
steps. Shortly after that Toom [84] showed how to construct Boolean 
circuits of size O(n ~+~) for arbitrarily small e > 0 in order to carry out 

3See [31], pp. 6-9 for a discussion of this. 
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the multiplication. I was a graduate student at Harvard at the time, and 
inspired by Cobham's question "Is multiplication harder than addition?" 
I was naively trying to prove that multiplication requires i2(n a) steps 
on a multitape Turing machine. Toom's paper caused me considerable 
surprise. With the help of Stal Aanderaa [22], I was reduced to showing 
that multiplication requires f~(n log n/(log log n) 2) steps using an "on- 
line" Turing machine. 4 I also pointed out in my thesis that Toom's 
method can be adapted to multitape Turing machines in order to 
multiply in O(n '÷E) steps, something that I am sure came as no sur- 
prise to Toom. 

The currently fastest asymptotic running time on a multitape Turing 
machine for number multiplication is O(n log n log log n), and was 
devised by Sch6nhage and Strassen [70] (1971) using the fast Fourier 
transform. However, Schfnhage [69] recently showed by a complicated 
argument that his storage modification machines {see Section 2) can 
multiply in time O(n) {linear time!). We are forced to conclude that either 
multiplication is easier than we thought or that Sch6nhage's machines 
cheat. 

(3) Matrix multiplication.  The obvious method requires nE(2n-1) 
arithmetic operations to multiply two n x n matrices, and attempts were 
made to prove the method optimal in the 1950's and 1960's. 
There was surprise when Strassen [81] {1969) published his method 
requiring only 4.7n 2.8~ operations. Considerable work has been devoted 
to reducing the exponent of 2.81, and currently the best time known 
is O(n 2"496) operations, due to Coppersmith and Winograd [24]. There 
is still plenty of room for progress, since the best known lower bound 
is 2n2-1 (see [13]}. 

(4) M a x i m u m  match ings  in general  undi rec ted  graphs. This 
was perhaps the first problem explicitly shown to be in P whose 
membership in P requires a difficult algorithm. Edmonds' influential 
paper [27] gave the result and discussed the notion of a polynomial time 
algorithm (see Section 2). He also pointed out that the simple notion 
of augmenting path, which suffices for the bipartite case, does not work 
for general undirected graphs. 

(5) Recogni t ion of p r ime  number s .  The major question here is 
whether this problem is in P. In other words, is there an algorithm that 
always tells us whether an arbitrary n-digit input integer is prime, and 
halts in a number of steps bounded by a fixed polynomial in n? Gary 
Miller [53] (1976) showed that there is such an algorithm, but its validity 
depends on the extended Riemann hypothesis. Solovay and Strassen 
[77] devised a fast Monte Carlo algorithm (see Section 5} for prime 
recognition, but if the input number is composite there is a small 
chance the algorithm will mistakenly say it is prime. The best provable 
deterministic algorithm known is due to Adleman, Pomerance, and 
Rumley [2] and runs in time nO(~°gl°gG which is slightly worse than 

4This lower bound has been slightly improved. See [56] and [64]. 
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polynomial. A variation of this due to H. Cohen and H. W. Lenstra Jr. 
[17] can routinely handle numbers up to 100 decimal digits in approx- 
imately 45 seconds. 

Recently three important problems have been shown to be in the class 
P The first is linear programming, shown by Khachian [43] in 1979 
(see [55] for an exposition). The second is determining whether two 
graphs of degree at most d are isomorphic, shown by Luks [50] in 1980. 
(The algorithm is polynomial in the number of vertices for fixed d, but 
exponential in d.) The third is factoring polynomials with rational 
coefficients. This was shown for polynomials in one variable by Lenstra, 
Lenstra, and Lovasz [48] in 1982. It can be generalized to polynomials 
in any fixed number of variables as shown by Kaltofen's result [39], [40]. 

I ~_~82 
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4 
Lower  B o u n d s  

The real challenge in complexity theory, and the problem that sets 
the theory apart from the analysis of algorithms, is proving lower 
bounds on the complexity of specific problems. There is something very 
satisfying in proving that a yes-no problem cannot be solved in n, or 
n ~, or 2 n steps, no matter what algorithm is used. There have been 
some important successes in proving lower bounds, but the open 
questions are even more important and somewhat frustrating. 

All important lower bounds on computation time or space are 
based on "diagonal arguments." Diagonal arguments were used by 
Turing and his contemporaries to prove certain problems are not 
algorithmically solvable. They were also used prior to 1960 to define 
hierarchies of computable 0-1 functions, s In 1960, Rabin [60] proved 
that for any reasonable complexity measure, such as computation time 
or space (memory), sufficiently increasing the allowed time or space 
etc. always allows more 0-1 functions to be computed. About the same 
time, Ritchie in his thesis [65] defined a specific hierarchy of functions 
(which he showed is nontrivial for 0-1 functions) in terms of the amount 
of space allowed. A little later Rabin's result was amplified in detail 
for time on mulfitape Turing machines by Hartmanis and Stearns [37], 
and for space by Stearns, Hartmanis, and Lewis [78]. 

4 .1  

N a t u r a l  D e c i d a b l e  P r o b l e m s  
Proved  In feas ib le  

The hierarchy results mentioned above gave lower bounds on the 
time and space needed to compute specific functions, but all such 
functions seemed to be "contrived." For example, it is easy to see that 
the functionf(x,y) which gives the first digit of the output of machine 
x on input y after (Ix[ + [y])2 steps cannot be computed in time 
(JX[ -'b ry[)2. It was not until 1972, when Albert Meyer and Larry 

~See, for example, Grzegorczyk [35]. 
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Stockmeyer [52] proved that the equivalence problem for regular 
expressions with squaring requires exponential space and, therefore, 
exponential time, that a nontrivial lower bound for general models of 
computation on a "natural" problem was found {natural in the sense 
of being interesting, and not about computing machines}. Shortly after 
that Meyer [51] found a very strong lower bound on the time required 
to determine the truth of formulas in a certain formal decidable theory 
called WSIS {weak monadic second-order theory of successor}. He 
proved that any computer whose running time was bounded by a fixed 
number of exponentials (2n, 22", 222", etc.) could not correctly decide 
WSIS. Meyer's Ph.D. student, Stockmeyer, went on to calculate [79] that 
any Boolean circuit (think computer) that correctly decides the truth 
of an arbitrary WSIS formula of length 616 symbols must have more 
than 10123 gates. The number 10123 was chosen to be the number of 
protons that could fit in the known universe. This is a very convincing 
infeasibility proof! 

Since Meyer and Stockmeyer there have been a large number of 
lower bounds on the complexity of decidable formal theories (see 
[29] and [80] for summaries}. One of the most interesting is a doubly 
exponential time lower bound on the time required to decide Presburger 
arithmetic (the theory of the natural numbers under addition) by Fischer 
and Rabin [30]. This is not far from the best known time upper bound 
for this theory, which is triply exponential [54]. The best space upper 
bound is doubly exponential [29]. 

Despite the above successes, the record for proving lower bounds 
on problems of smaller complexity is appalling. In fact, there is no 
nonlinear time lower bound known on a general-purpose computation 
model for any natural problem in NP (see Section 4.4), in particular, 
for any of the 300 problems listed in [31]. Of course, one can prove 
by diagonal arguments the existence of problems in NP requiring time 
n k for any fixed k. In the case of space lower bounds, however, we do 
not even know how to prove the existence of NP problems not solvable 
in space O(log n) on an off-line Turing machine (see Section 4.3}. This 
is despite the fact that the best known space upper bounds in many 
natural cases are essentially linear in n. 

4 .2  
S t r u c t u r e d  L o w e r  B o u n d s  

Although we have had little success in proving interesting lower 
bounds for concrete problems on general computer models, we do 
have interesting results for "structured" models. The term "structured" 
was introduced by Borodin [9] to refer to computers restricted to certain 
operations appropriate to the problem at hand. A simple example of 
this is the problem of sorting n numbers. One can prove (see [44]) 
without much difficulty that this requires at least n logn comparisons, 
provided that the only operation the computer is allowed to do with 
the inputs is to compare them in pairs. This lower bound says nothing 
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about Turing machines or Boolean circuits, but it has been extended 
to unit cost random access machines, provided division is disallowed. 

A second and very elegant structured lower bound, due to Strassen 
[82] (1973), states that polynomial interpolation, that is, finding the 
coefficients of the polynomial of degree n-1 that passes through n given 
points, requires fl(nlogn) multiplications, provided only arithmetic 
operations are allowed. Part of the interest here is that Strassen's original 
proof depends on Bezout's theorem, a deep result in algebraic geometry. 
Very recently, Baur and Strassen [83] have extended the lower bound 
to show that even the middle coefficient of the interpolating polynomial 
through n points requires fl(nlogn) multiplications to compute. 

Part of the appeal of all of these structured results is that the 
lower bounds are close to the best known upper bounds, 6 and the 
best known algorithms can be implemented on the structured models 
to which the lower bounds apply. (Note that radix sort, which is 
sometimes said to be linear time, really requires at least nlogn steps, 
if one assumes the input numbers have enough digits so that they all 
can be distinct.) 
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4 .3  
T i m e - S p a c e  P r o d u c t  

L o w e r  B o u n d s  
Another way around the impasse of proving time and space lower 

bounds is to prove time lower bounds under the assumption of small 
space. Cobham [16] proved the first such result in 1966, when he 
showed that the time-space product for recognizing n-digit perfect 
squares on an "off-line" Turing machine must be f~(n2). (The same is 
true of n-symbol palindromes.} Here the input is written on a two-way 
read-only input tape, and the space used is by definition the number 
of squares scanned by the work tapes available to the Turing machine. 
Thus, if, for example, the space is restricted to O(logan) {which is more 
than sufficient}, then the time must be fl(n2/log3n) steps. 

The weakness in Cobham's result is that although the off-line 
Turing machine is a reasonable one for measuring computation time 
and space separately, it is too restrictive when time and space are con- 
sidered together. For example, the palindromes can obviously 
be recognized in 2n steps and constant space if two heads are allowed 
to scan the input tape simultaneously. Borodin and I [10] partially 
rectified the weakness when we proved that sorting n integers in the 
range one to n z requires a time-space product of [2(n2/logn). The proof 
applies to any "general sequential machine," which includes off-line 
Turing machines with many input heads, or even random access to the 
input tape. It is unfortunately crucial to our proof that sorting requires 
many output bits, and it remains an interesting open question whether 
a similar lower bound can be made to apply to a set recognition problem, 

6See Borodin and Munro [12] for upper bounds for interpolation. 
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such as recognizing whether all n input numbers are distinct. (Our lower 
bound on sorting has recently been slightly improved in [64].) 

4 . 4  
N P - C o m p l e t e n e s s  

The theory of NP-completeness is surely the most significant develop- 
ment in computational complexity. I will not dwell on it here because 
it is now well known and is the subject of textbooks. In particular, the 
book by Garey and Johnson [31] is an excellent place to read about it. 

The class NP consists of all sets recognizable in polynomial time by 
a nondeterministic Turing machine. As far as I know, the first time a 
mathematically equivalent class was defined was by James Bennett in 
his 1962 Ph.D. thesis [4]. Bennett used the name "extended positive 
rudimentary relations" for his class, and his definition used logical quan- 
tifiers instead of computing machines. I read this part of his thesis and 
realized his class could be characterized as the now familiar definition 
of NP. I used the term .~+ {after Cobham's class _~Y) in my 1971 
paper [18], and Karp gave the now accepted name NP to the class in 
his 1972 paper [42]. Meanwhile, quite independent of the formal 
development, Edmonds, back in 1965 [28], talked informally about 
problems with a "good characterization," a notion essentially equivalent 
to NP. 

In 1971 [18], I introduced the notion of NP-complete and proved 
3-satisfiably and the subgraph problem were NP-complete. A year later, 
Karp [42] proved 21 problems were NP-complete, thus forcefully 
demonstrating the importance of the subject. Independently of this and 
slightly later, Leonid Levin [49], in the Soviet Union [now at Boston 
University), defined a similar (and stronger) notion and proved six 
problems were complete in his sense. The informal notion of "search 
problem" was standard in the Soviet literature, and Levin called his 
problems "universal search problems." 

The class NP includes an enormous number of practical problems 
that occur in business and industry (see [31]). A proof that an NP 
problem is NP-complete is a proof that the problem is not in P {does 
not have a deterministic polynomial time algorithm) unless every NP 
problem is in P. Since the latter condition would revolutionize computer 
science, the practical effect of NP-completeness is a lower bound. This 
is why I have included this subject in the section on lower bounds. 

# P - C o m p l e t e n e s s  
The notion of NP-completeness applies to sets, and a proof that a 

set is NP-complete is usually interpreted as a proof that it is intractable. 
There are, however, a large number of apparently intractable functions 
for which no NP-completeness proof seems to be relevant. Leslie Valiant 
[86,87] defined the notion of #P-completeness to help remedy this 
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situation. Proving that a function is #P-'complete shows that it is 
apparently intractable to compute in the same way that proving a set 
is NP-complete shows that it is apparently intractable to recognize; 
namely, if a #P-complete function is computable in polynomial time, 
then P = NP. 

Valiant gave many examples of #P-complete functions, but probably 
the most interesting one is the permanent of an integer matrix. The 
permanent has a definition formally similar to the determinant, but 
whereas the determinant is easy to compute by Gaussian elimination, 
the many attempts over the past hundred odd years to find a feasible 
way to compute the permanent have all failed. Valiant gave the first 
convincing reason for this failure when he proved the permanent 
#P-complete. 
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5 
Probabilistic Algorithms 

The use of random numbers to simulate or approximate random 
processes is very natural and is well established in computing practice. 
However, the idea that random inputs might be very useful in solving 
deterministic combinatorial problems has been much slower in 
penetrating the computer science community. Here I will restrict 
attention to probabilistic {coin tossing) polynomial time algorithms that 
"solve" {in a reasonable sense) a problem for which no deterministic 
polynomial time algorithm is known. 

The first such algorithm seems to be the one by Berlekamp [5] in 
1970, for factoring a polynomial f over the field GF(p) of p elements. 
Berlekamp's algorithm runs in time polynomial in the degree o f f  and 
log p, and with probability at least one-half it finds a correct prime 
factorization off; otherwise it ends in failure. Since the algorithm can 
be repeated any number of times and the failure events are all indepen- 
dent, the algorithm in practice always factors in a feasible amount of 
time. 

A more drastic example is the algorithm for prime recognition 
due to Solovay and Strassen [77] (submitted in 1974). This algorithm 
runs in time polynomial in the length of the input m, and outputs 
either "prime" or "composite." If m is in fact prime, then the output 
is certainly "prime," but if m is composite, then with probability at 
most one-half the answer may also be "prime:' The algorithm may 
be repeated any number of times on an input m with independent 
results. Thus if the answer is ever "composite," the user knows m 
is composite; if the answer is consistently "prime" after, say, 100 
runs, then the user has good evidence that m is prime, since any fixed 
composite m would give such results with tiny probability (less than 
2-,oo). 

Rabin [61] developed a different probabilistic algorithm with proper- 
ties similar to the one above, and found it to be very fast on computer 
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trials. The number  2400 -- 593 was identified as [probably) prime within 
a few minutes. 

One interesting application of probabilistic prime testers was pro- 
posed by Rivest, Shamir, and Adleman [67a] in their landmark paper 
on public key cryptosystems in 1978. Their system requires the genera- 
tion of large (100 digit) random primes. They proposed testing random 
100 digit numbers  using the Solovay-Strassen method until one was 
found that was probably prime in the sense outlined above. Actually 
with the new high-powered deterministic prime tester of Cohen and 
Lenstra [17] mentioned in Section 3, once a random 100 digit "probably 
prime" number  was found it could be tested for certain in about 45 
seconds, if it is important  to know for certain. 

The class of sets with polynomial time probabilistic recognition 
algorithms in the sense of Solovay and Strassen is known as R (or 
sometimes RP) in the literature. Thus a set is in R if and only if it has 
a probabilistic recognition algorithm that always halts in polynomial 
time and never makes a mistake for inputs not in R, and for each input 
in R it outputs the right answer for each run with probability at least 
one-half. Hence the set of composite numbers  is in R, and in general 
P _C R C NP. There are other interesting examples of sets in R not 
known to be in P. For example, Schwartz [71] shows that the set of non- 
singular matrices whose entries are polynomials in many  variables is 
in R. The algorithm evaluates the polynomials at random small integer 
values and computes the determinant  of the result. (The determinant  
apparently cannot feasibly be computed directly because the poly- 
nomials computed would have exponentially many terms in general.} 

It is an intriguing, open question whether  R--P.  It is tempting to 
conjecture yes on the philosophical grounds that random coin tosses 
should not be of much use when  the answer being sought is a well- 
defined yes or no. A related question is whether a probabilistic algorithm 
{showing a problem is in R) is for all practical purposes as good as a 
deterministic algorithm. After all, the probabilistic algorithms can be 
run using the pseudorandom number  generations available on most 
computers, and an error probability of 2 -l°° is negligible. The catch is 
that pseudorandom number  generators do not produce truly random 
numbers, and nobody knows how well they will work for a given 
probalistic algorithm. In fact, experience shows they seem to work well. 
But if they always work well, then it follows that R = P, because 
pseudorandom numbers are generated deterministically so true random- 
ness would not help after all. Another possibility is to use a physical 
process such as thermal noise to generate random numbers.  But it is 
an open question in the philosophy of science how truly random nature 
can be. 

Let me close this section by mentioning an interesting theorem of 
Adlemen [1] on the class R. It is easy to see [57b] that if a set is in P, 
then for each n there is a Boolean circuit of size bounded by a fixed 
polynomial in n which determines whether  an arbitrary string of length 
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n is in the set. What  Adleman proved is that the same is true for the 
class R. Thus, for example, for each n there is a small "computer circuit" 
that correctly and rapidly tests whether  n digit numbers  are prime. The 
catch is that the circuits are not uniform in n, and in fact for the case 
of 100 digits it may not be feasible to figure out how to build the circuit. 7 

6 
Synchronous 

Parallel Computation 
With the advent of VLSI technology in which one or more processors 

can be placed on a quarter-inch chip, it is natural  to think of a future 
composed of many  thousands of such processors working together 
in parallel to solve a single problem. Although no very  large general- 
purpose machine of this kind has been built yet, there are such pro- 
jects under  way (see Schwartz [72]). This motivates the recent develop- 
ment  of a very  pleasing branch of computat ion complexity: the theory  
of large-scale synchronous  parallel computation,  in which the number  
of processors is a resource bounded  by a parameter  H(n) (H is for 
hardware) in the same way that space is bounded  by a parameter  S(n) 
in sequential complexity theory. Typically H(n) is a fixed polynomial  
in n. 

Quite a number  of parallel computation models have been proposed 
{see [21] for a review), just as there are many  competing sequential  
models (see Section 2). There  are two main contenders,  however. The 
first is the class of shared m e m o r y  models in which a large number  
of processors communicate  via a random access memory  that they hold 
in common.  Many parallel algorithms have been published for such 
models,, since real parallel machines may  well be like this when  they 
are built. However,  for the mathematical  theory  these models are not 
very  satisfactory because too much of their detailed specification is 
arbitrary: How are read and write conflicts in the common memory  
resolved? What basic operations are allowed for each processor? Should 
one charge log H(n) t ime units to access common memory? 

Hence I prefer  the cleaner model  discussed by Borodin [8] (1977), 
in which a parallel computer  is a uniform family (B,/ of acyclic 
Boolean circuits, such that Bn has n inputs (and hence takes care of 
those input strings of length n). Then H(n) (the amount  of hardware) 
is simply the number  of gates in B,, and T(n) (the parallel computat ion 
time) is the depth of the circuit Bn (i.e., length of the longest path from 
an ' input  to an output). This model  has the practical justification that 
presumably  all real machines  (including shared m em o ry  machines) 
are built f rom Boolean circuits. Furthermore,  the min imum Boolean 
size and depth needed to compute  a function is a natural mathematical  
problem and was considered well before the theory of parallel 
computat ion was around. 

ZFor more theory on probabilistic computation, see Gill [32]. 
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Fortunately for the theory, the minimum values of hardware H(n) 
and parallel time T(n) are not widely different for the various competing 
parallel computer models. In particular, there is an interesting general 
fact true for all the models, first proved for a particular model by Pratt 
and Stockmeyer [58] in 1974 and called the "parallel computation thesis" 
in [33]; namely, a problem can be solved in time polynomial in T(n) 
by a parallel machine {with unlimited hardware} if and only if it can 
be solved in space polynomial in T(n) by a sequential machine {with 
unlimited time}. 

A basic question in parallel computation is: Which problems can 
be solved substantially faster using many processors rather than 
one processor? Nicholas Pippenger [57a] formalized this question by 
defining the class {now called NC for "Nick's class"} of problems 
solvable ultra fast [time T(n) = (log n) °(~)] on a parallel computer with 
a feasible [H(n) = n °"/] amount of hardware. Fortunately, the class 
NC remains the same, independent of the particular parallel computer 
model chosen, and it is easy to see that NC is a subset of the class 
FP of functions computable sequentially in polynomial time. Our 
informal question can then be formalized as follows: Which problems 
in FP are also in FC? 

It is conceivable {though unlikely} that NC = FP, since to prove NC 
¢: FP would require a breakthrough in complexity theory {see the end 
of Section 4.1 I. Since we do not know how to prove a function f i n  FP 
is not in NC, the next best thing is to prove that f i s  log space-complete 
for FP. This is the analog of proving a problem is NP-complete, and has 
the practical effect of discouraging efforts for finding super fast parallel 
algorithms for f This is because if f is log space-complete for FP and 
f is in NC, then FP = NC which would be a big surprise. 

Quite a bit of progress has been made in classifying problems 
in FP as to whether they are in NC or log space-complete for FP {of 
course, they may be neither}. The first example of a problem complete 
for P was presented in 1973 by me in [20], although I did not state the 
result as a completeness result. Shortly after that Jones and Laaser [38] 
defined this notion of completeness and gave about five examples, 
including the emptiness problem for context-free grammers. Probably 
the simplest problem proved complete for FP is the so-called circuit 
value problem [47]: given a Boolean circuit together with values for 
its inputs, find the value of the output. The example most interesting 
to me, due to Goldschlager, Shaw, and Staples [34], is finding the 
{parity of I maximum flow through a given network with {large} positive 
integer capacities on its edges. The interest comes from the subtlety 
of the completeness proof. Finally, I should mention that linear pro- 
gramming is complete for FP. In this case the difficult part is showing 
that the problem is in P {see [4311, after which the completeness proof 
[26] is straightforward. 

Among the problems known to be in NC are the four arithmetic 
operations (+, - ,  *, +) on binary numbers, sorting, graph connectiv- 
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ity, matrix operations {multiplication, inverse, determinant, rank), 
polynomial greatest common divisors, context-free languages, and 
finding a minimum spanning forest in a graph (see [11], [21], [63], [67b]). 
The size of a maximum matching for a given graph is known [11] 
to be in "random" NC {NC in which coin tosses are allowed), although 
it is an interesting open question of whether finding an actual maximum 
matching is even in random NC Results in [89] and [67b] provide general 
methods for showing problems are in NC. 

The most interesting problem in FP not known either to be complete 
for FP or in {random) NC is finding the greatest common divisor of two 
integers. There are many other interesting problems that have yet to 
be classified, including finding a maximum matching or a maximal 
clique in a graph (see [88]). 
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7 
The Future 

Let me say again that the field of computational complexity is large 
and this overview is brief. There are large parts of the subject that 
I have left out altogether or barely touched on. My apologies to the 
researchers in those parts. 

One relatively new and exciting part, called "computational infor- 
mation theory," by Yao [92], builds on Shannon's classical informa- 
tion theory by considering information that can be accessed through 
a feasible computation. This subject was sparked largely by the papers 
by Diffie and Hellman [25] and Rivest, Shamir, and Adleman [67a] on 
public key cryptosystems, although its computational roots go back to 
Kolmogorov [45] and Chaitin [14a], [14b], who first gave meaning to 
the notion of a single finite sequence being "random," by using the 
theory of computation. An interesting idea in this theory, considered 
by Shamir [73] and Blum and Micali [7], concerns generating pseudo- 
random sequences in which future bits are provably hard to predict 
in terms of past bits. Yao [92] proves that the existence of such sequences 
would have positive implications about the deterministic complexity 
of the probabilistic class R {see Section 51. In fact, computational 
information theory promises to shed light on the role of randomness 
in computation. 

In addition to computational information theory we can expect 
interesting new results on probabilistic algorithms, parallel computa- 
tion, and (with any luck) lower bounds. Concerning lower bounds, 
the one breakthrough for which I see some hope in the near future 
is showing that not every problem in P is solvable in space O(log n), 
and perhaps also P -~ N C  In any case, the field of computational com- 
plexity remains very vigorous, and I look forward to seeing what the 
future will bring. 
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E1.2 [Computat ion by Abstract  Devices]: Modes of Computation-- 
parallelism; probabilistic computation; E2.1 [Analysis of Algorithms and 

430 STEPHEN A. COOK 



Problem Complexity]: Numerical Algorithms and Problems--com- 
putations on polynomials; G.3 [Mathematics of Computing]: Probability 
and Statistics: probabilistic algorithms 
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