
I a m greatly honored to receive
this award, bear ing the name of Pdan
Turing. Perhaps Turing would be
pleased that it should go to someone
educated at his old college, King 's
College at Cambridge. While there
in 19561 wrote my first computer
program; it was on the EDSAC. O f
course EDSAC made history. But I
am ashamed to say it did not lure
me into computing, and I ignored
computers for four years. In 1960
I thought that computers might
be more peaceful to handle than
schoo lch i ld ren- - I was then a
t e a c h e r - - s o I appl ied for a job at
Ferranti in London, at the time of
Pegasus. I was asked at the interview
whether I would like to devote my life
to computers. This daunt ing notion
had never crossed my mind. Well,
here I am still, and I have had the
lucky chance to grow alongside com-
puter science.

This award gives an unusual
opportunity, and I hope a license, to
reflect on a line of research from a
personal point of view. I thought I
should seize the opportunity, because
among my interests there is one
thread which has preoccupied me
for 20 years. Describing this kind of
experience can surely yield insight,
provided one remembers that it is
a personal thread; science is woven
from many such threads and is all the
stronger when each thread is hard
to trace in the finished fabric.

The thread which I want to pick
up is the semantic basis of concur-
rent computat ion. I shall begin by
explaining how I came to see that
concurrency requires a fresh ap-
proach, not merely an extension
of the repertoire of entities and con-

structions which explain sequential
computing. Then I shall talk about
my efforts to find basic construc-
tions for concurrency, guided by
experience with sequential seman-
tics. This is the work which led
to a Calculus for Communica t ing
Systems (CCS). At that point I
shall briefly discuss the extent to
which these constructions may be
understood mathematically, in the
way that sequential comput ing may
be understood in terms of functions.
Finally, I shall outline a new basic
calculus for concurrency; it gives
prominence to the old idea of naming
or reference, which has hitherto been
treated as a second-class citizen by
theories of computing.

I make a disclaimer. I reject the
idea that there can be a unique con-
ceptual model, or one preferred for-
malism, for all aspects of something
as large as concurrent computat ion,
which is in a sense the whole of our
sub jec t - -con ta in ing sequential com-
put ing as a well-behaved special area.
We need many levels of explanation:
many different languages, calculi,
and theories for the different spe-
cialisms. The applications are
various: the flow of information in an
insurance company, network com-
munications, the real-t ime com-
municat ion among in-flight control
computers, concurrency control in
a database, the behavior of parallel
object-oriented programs, the
semantic analysis of variables in
concurrent logic programming.
We surely do not expect the terms
of discussion and analysis to be
the same for all of these.

But there is a complementary claim
to make, and it is this: Compu te r

scientists, as all scientists, seek a com-
mon framework in which to link and
to organize many levels of expla-
nation; moreover, this common
framework must be semantic, since
our explanations (including pro-
grams) are typically in formal
l a n g u a g e - - a n d often in a mixture
of formalisms, to deal with the large
heterogeneous systems which are our
business. For the much smaller world
of sequential computat ion, a com-
mon semantic framework is founded
on the central notion of a mathematical
function and is formally expressed
in a functional ca l cu lus - -o f which
Alonzo Church 's l -calculus is the
famous prototype. Functions are
an essential ingredient of the air we
breathe, so to speak, when we discuss
the semantics of sequential p rogram-
ming. But for concurrent p rogram-
ming and interactive systems
in general, we have nothing
comparable.

So where do we find the semantic
ingredients for concurrency, or how
can we distill them? It is an ambit ious
goal because, as I said earlier, con-
currency is ubiquitous. I believe that
the right ideas to explain concurrent
comput ing will only come from a
dialectic between models from logic
and mathematics and a proper distil-
lation of a practical experience.

I conduct a piece of the dialectic.
I t ry to reconcile the an t i thes i s - - for
it does seem to be o n e - - b e t w e e n two
things: on the one hand, the puri ty
and simplicity exemplified by the
calculus of functions and, on the
other hand, some very concrete ideas
about concurrency and interaction
suggested by p rog ramming and the
realities of communicat ion.

78 .January 1993/Vol.36, No.l / ¢ O M I I I U N | ¢ A T I O N S O F T H E A C M

m

T u r | n g
L e c t u r e i

i I

¢OMMUNICATIONSOFTHEACil/J~NuaFy 1993/Vol.36, No.l 7 9

l e m e n t s o f I n t e r a c t i o n

Entitles
Through the seventies, I became
convinced that a theory of concur-
rency and interaction requires a new
conceptual framework, not jus t a re-
f inement o f what we find natural for
sequential computing.

Often, the experiences which give
one conviction are not p lanned and
not profound. But I want to recall
one of mine, because it serves the
theme here in more than one way.
It arose when I was trying to extend
the Scot t -St rachey approach to
p rogramming- language semantics,
which deals beautifully with the most
sophisticated sequential languages,
to handle concurrent languages as
well. The a t tempt had to be made,
and I was optimistic about success.

In that approach a sequential pro-
gram, assuming no in termediate
input /output , is perfectly repre-
sented by a function from memories
to memories. (I use the term "mem-
ory" to mean a memory state, con-
taining values for all the p rogram
variables.) But Dana Scott developed
a theory o f domains--partially or-
dered sets o f a special na tu r e - -wh ich
provides meaning for the A-calculus,
the pr ime functional calculus. So in
the Scot t -St rachey approach, the
meaning of an imperative p rogram
lies in the domain given by the equa-
tion

Program Meanings =
Memories ~ Memories.

Everything works well with this do-
main, and the reason is: that to every
syntactic construction in any sequen-
tial language, there corresponds an
abstract operat ion which builds the
meaning of a composite p rogram
from the meanings of its component
programs. Tha t is, the semantics is

compositional--an essential property .
Now, one o f the things that con-

currency introduces is nondeter-
minism. (Of course you can also have
nondeterminism without concur-
rency, but in my opinion it is concur-
rency which inflicts nondeterminism
on you.) Plotkin dealt with nondeter-
minism by means of his power-
domain construction, a tour de force of
domain theory. I t provides, for any
suitable domain D, the powerdomain
T(D) whose elements are subsets of D.
So with nondeterminism in mind we
can redef ine the meanings of pro-
grams as

Program Meanings =
Memories --> P(Memories)

- -essent ia l ly relations over memo-
ries. This semantics is perfectly com-
positional for the kind of nondeter-
ministic language which you get by
adding "don' t care" branching to a
sequential language.

But concurrency has a shock in
store; the compositionality /s lost if
you can combine subprograms to run
in parallel, because they can interfere
with one another . To be precise,
there are programs P1 and P2 which
have the same relational meaning,
but which behave differently when
each runs in parallel with a third pro-
gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1
Program P2 : x := 2

In the absence of interference, Pl
and P2 both t ransform the initial
memory by replacing the value of x
by 2, so they have the same meaning.
But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2
in turn:

Program R1 : P1 par Q
Program R2 : P2 par Q

then the programs Rl and Rz have
dif ferent meaning. (Even if an as-
s ignment statement is executed indi-
visibly, R1 can end up with x equal to
2, 3, or 4, while R2 can only end up
with x equal to 2 or 3.) So a composi-
tional semantics must be more re-
fined; it has to take account of the
way that a p rogram interacts with the
memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we
cannot use functions or relations
over memories to in terpre t concur-
rent programs, then what can we
use? Well, one can quite naturally
give the relational meaning a finer
granulari ty, so that it records every
step which a p rogram makes from
one memory access to the n e x t - - a n d
this can be done without leaving
domain theory. But the phenome-
non taught me a more radical lesson:
Once the memory is no longer at the
behest of a single master, then the
master-to-slave (or: function-to-
value) view of the program-to-
memory relat ionship becomes a bit
of a fiction. An old proverb states:
He who serves two masters serves
none. I t is better to develop a general
model of interactive systems in which
the p rogram- to -memory interaction
is jus t a special case of interaction
among peers.

It helps to visualize. Figure l
shows the shared-memory model,
very informally. It jus t represents the
active/passive distinction between
components , by using different ly
shaped nodes. (I shall consistently
use squares for active processes in my
pictures and circles for passive
things.) O f course, in general the
programs use several variables, all
s tored in M.

To remove the active/passive dis-
tinction, we shall elevate M to the sta-
tus of a process; then we regard pro-
gram variables x, y , . . . as the names
of channels of interaction between pro-
gram and memory, as shown in Fig-
ure 2.

Now, thinking more generally, let
us use memories to illustrate the idea
that p roces ses - -o f any k i n d - - c a n be
composed to make larger ones.

In the sequential world one can
maintain the convenient fiction that a
memory is monolithic; but this is
quite unrealistic in concurrent pro-
gramming, because di f ferent parts of
memory may be accessed simultane-
ously. So we go one step fur ther , as
shown in Figure 3, and regard each
cell of memory as a process, X say,
l inked to one or more programs
(themselves processes) by an appro-
priately named channel.

Software engineers may well resist
this homogeneous t rea tment and
firmly adhere to the shared-memory

8 0 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

model; it is impor tant for them, be-
cause it admits a methodology which
can help in writing correct programs.
Theoret icians may reply that to tol-
erate two kinds of entity in a basic
model, where one kind will do, is sci-
entific anathema; they may also point
out that the active/passive distinction
of the shared-memory model does
not easily accommodate hybrids,
such as a database which reorganizes
itself while you are not using it. And
both these atti tudes are right.

So let us recall the need for many
levels of explanation. William of
Occam opposed the proliferat ion of
entities, but only when carried be-
yond what is needed --procter neces-
sitatem! Compute r systems engineers
have a pressing need for a rich ontol-
ogy; they welcome the ability to use
different concepts and models for
di f ferent purposes. For example, the
shared-memory model is a natural
part o f their repertoire . But com-
puter scientists must also look for
something basic which underl ies the
various models; they are interested
not only in individual designs and
systems, but also in a unif ied theory
of their ingredients. To attain unity
in a basic model of concurrency, all
in te rac t ions - -and therefore all inter-
ac to r s - -mus t be treated alike; that is
why I have called this work "Ele-
ments of Interaction."

To avoid the impression that the
only interactors I am thinking of are
programs, or memories, or computer
systems, I show in Figure 4 a mobile
telephone network in which the
channels are radio channels. The
communicat ion protocol allows a car
to switch channels to whichever base
station is nearest, the whole system
being moni tored and controlled cen-
trally. Now, we want our construc-
tions to describe such systems per-
fectly well, at a discrete level; the
elements of interaction must not be
specific to computer systems.

Much of what I have been saying
was already well unders tood in the
sixties by Car l -Adam Petri, who pio-
neered the scientific model ing of dis-
crete concurrent systems. Petri 's
work has a secure place at the root of
concurrency theory. He declared the
aim that his theory of nets s h o u l d - -
at its lowest levels--serve impartially
as a model of the physical world and

as a model of computat ion. Already,
for him, a memory register and a
p rogram are modeled by the same
kind of object--namely a n e t - - a n d this
breaks down the active/passive di-
chotomy. The conceptual f ramework
of net theory is as spare as one can
imagine. This has indeed paid off in
clarity and depth, both for the analy-
sis of individual systems and for the
classification of systems.

Static Construct ions
Besides calling the question the ac-
tive/passive dichotomy for the entities
of which a system is composed, con-
currency demands a fresh approach

F i g u r e I . T h e s h a r e d
m e m o r y m o d e l

F igure 2. M e m o r y as a n
Interactive p r o c e s s

F igure 3. M e m o r y as a
distributed p r o c e s s

F igure 4. A m o b i l e
telephone network

x D
Y

rq
J

D x i

M

Fq
J

STATION STATION I STATION I "'"

I I

COtAIWUM|¢A'IrlONSOP'IrI41EA¢Im/January 1993/Vol.36, No.l Bin

l e m e n t s o f I n t e r a c t i o n

in terms of its primitive constructions.
What I always wanted to advance, to
complement Petri net theory, is the
synthetic or composit ional view of
systems which is familiar from pro-
gramming. This is essentially an al-
gebraic view, for algebra is about
constructions and their meaning. For
sequential computat ion this view is
manifest in the A-calculus, in contrast
w i t h - - s a y - - t h e classical theory of
automata.

To handle concurrency, we should
not merely add extra material to the
languages and theories of sequential
c o m p u t i n g - - i n part icular, extra con-
structions for bui lding bigger sys-
tems from smaller ones. I f we do,
then o f course we get a larger reper-
toire of primitive constructions than
we had before. This is a fine way to
fulfill the prophecy that concurrency
is more complex than sequentiality.
And it has often been done. Well,
concurrency may be more complex,
but we should not give in so easily.
We should limit ourselves to con-
structions which are essential for
concurrency in its own terms; then
indeed we can see sequential com-
put ing as a higher, and more spe-
cific, level of explanation.

Consider sequential composit ion

P; Q

- - t h e familiar semicolon, the essen-
tial glue of sequential imperative
programming . To get concurrency,
should we keep sequential composi-
tion and jus t add parallel composi-
tion? Well, we might want to do that
for a p rog ramming language, be-
cause we must give p rogrammers
their familiar tools as well as newer
things. But should we do it in a basic
calculus? I believe not; for sequential
composit ion is indeed a special case

of parallel composit ion

PIQ
when this construction is proper ly
unders tood. I unders tand it to mean
that P and Q are acting side by side,
interacting in whatever way we have
designed them to interact. So se-
quential composit ion is the special
case in which the only interaction
occurs when P finishes and Q begins.
To allow a special kind of interaction
here would violate our principle that,
in the basic model, all interactions
are o f the same kind.

I t was this sort o f mundane obser-
vation which prevented me from try-
ing to extrapolate f rom sequentiality
and led me to try to capture, in a new
calculus, a set o f constructions basic
to concurrency. This is what I un-
ders tand Church to have done for
sequential computing, with the A-
calculus. We wish to match the func-
tional calculus not by copying its con-
structions, but by emulat ing two of its
attributes: It is synthetic--we build
systems in it, because the structure of
terms represents the structure of
processes; and it is computational--its
basic semantic notion is a step o f
computat ion. Its fur ther attribute,
that it has an agreed mathematical
interpretat ion, we cannot yet match
(though good progress is being
made). But Church himself under-
stood his A-calculus terms as func-
tions in a computat ional sense of that
word; he did not yet have Scott's
denotations.

To summarize: For me, the func-
tional calculus was a paradigm--but
not a platform--for building a calcu-
lus for communicat ing systems.

I pointed out jus t now that se-
quential composit ion of processes is a
special case of parallel composition.
Indeed, in designing CCS I insisted
that there be only a single combinator
for combining processes which inter-
act or which coexist. This may seem a
tall order , for I also insisted that
memory registers be modeled as pro-
cesses, so this same combinator must
be able to assemble them into a mem-
ory, to compose the processes which
use them, and to combine processes
with memory. But one combinator
does indeed suffice, and this is be-
cause all interactions can indeed be
t reated in the same way. For exam-

ple, we can write the system of Figure
3 as

PIMIQ where M--XIYIZ

o r a s

vlxBYiZlQ
The very same expression will be
used even when the programs P and
Q interact in some other way, over
and above their interaction via mem-
ory, or when X, Y, and Z are not
simply storage registers, but perhaps
processes that are in termediary be-
tween the programs and a remote
memory. The form of the expression
is independen t of the nature o f these
five processes.

The algebraic nature of the calcu-
lus is beginning to emerge, with this
single combinator at its heart. The
intuition behind parallel composit ion
is that we are simply assembling the
components of a system t o g e t h e r - -
so we expect the combinator to be
associative and commutative. This is
why we have no brackets in our ex-
pressions. Each di f ferent o rde r ing
and bracketing o f the members
would represent a di f ferent part i t ion
of a system into subsystems.

How can our algebra reflect more
explicitly the structure induced by
the linkage among system compo-
nents? We note first that the compo-
nents P, Q, x in Figure 3 will
themselves be process expressions;
moreover, the channel y links only
the members P and Y, since those will
be the only expressions in which the
channel name y appears. We do not
give here the process expression for
a register like Y; suffice it to say that
each such expression will de te rmine
its location as a channel name. Thus
we can say that f rom P's viewpoint,
the name y locates the cell Y. Now Fig-
ure 3 exhibits this idea of location
very clearly; we also want our algebra
to capture the idea. For this purpose,
we int roduce a fur ther combinator to
ensure that the register Y is accessible
only to P - - i . e . , that the channel y is
local to them. We call this new com-
binator restriction; for example, in the
expression

vy(Y[P)

the channel y is restricted for use be-
tween Y and P. The greek let ter v is
used partly for the pun on "new"; in

8 mjP January 1993/Vol.36, No.l / C O N N U N I C A T I O H | O I I T I I I I A C M

S o u r c e s a n d R e l a t e d W o r k

S ome of the important sources and relevant papers are cited here, sec-
t ion by section.

£ntltle$. Tennent [361 is a classic exposition of the Scott-Strachey
approach to semantics. Gunter and Scott [131 is a recent exposition of Scott's
domain theory. It contains a section on powerdomains, which were originally
published in [32]. Petri's Ph.D. dissertation [31] is the first publicatlon on Petri
net theory, and Reisig [33] is an introductory textbook.

• l~tlc constructions. Church [9l is the first publication on the A-calculus;
Barendregt [5] gives a recent and complete exposition of the ~.-calculus. MiIner
[21] gives the first exposition of CCS and brings It uP to date In a later text-
book [22]. MIIner in [20] gives the algebra of f low graphs, a static algeDra of
processes.

Dynamic constntctlons. Hoare [16] introduces the programming language CSP
and In a textbook [17] gives its algebraic theory. Baeten and Weljland [4] ex-
POUnd the process algebra ACP due originally to Bergstra and Klop. The speci-
fication language Lotos was designed by Brinksma [7].

Meaning. Some important domain-theoretic models for concurrency are the
failures model of Brookes et al. [81, Hennessy's acceptance trees [14], and
Abramsky's domain for bislmulation [1]. The observation equivalence of pro-
cesses was introduced by MIIner [21]; Park [30] placed it on a firmer mathemat-
Ical footing with the notion of bislmulation. Tile event structures of Nielsen et
al. [28] combine domain theory with the causality structure of Petrl nets.

Values. B0hm and Berarduccl [61 show how to encode data structures into
the h-CalCUlUS. The second-order (polymorphic) A-calculus was discovered in
the early seventies independently by Girard [111 and Reynolds [341. An early
presentation of Hewitt's ACtors model is by Hewltt et al. [15]; a recent book on
Actors Is by Agha [2]. Smalltalk [12] is probably the first programming language
to treat values--even the simplest, like numbers--as objects which receive
messages.

Names. Astesiano and Zucca [3] studied a version of CCS in which channels
(i.e., names, in the terms of this article) could be parametrized on values, thus
allowing some mobility. Kennaway and Sleep [19] built the Idea Of transmitting
names as messages into a language for distributed operating systems. In 1980,
at Arhus, Mogens Nielsen and I had tried to treat mobil ity algebraically In CCS,
but failed. Engberg and Nielsen [101 later succeeded, giving the first algebraic
treatment of a process calculus with dynamic reconflguration (their report is
unpublished). These ideas were refined and strengthened by MIIner et al. lead-
Ing to the at-calculus [251. Milner [231 gives a recent tutorial exposition of a
more general form, also treating type structure.

As an accessible Illustration of how to apply the ~r-calCulUS, Orava and Parrow
[29] made a rigorous study Of a simplified mobile telephone network, which I
have used here. A translation of the A-calculus into the ~r-calculus iS given by
MIIner [24]. Walker [381 explored first the use of the a-calculus to give seman-
tics to concurrent object-oriented programming. Honda and Tokoro [18] give
an interesting variant of the ~r-calculus suitable for asynchronous communica-
tion, which brings It closer to Actors and to object-oriented programming.

Another way to achieve mobil i ty Is to allow processes themselves to be trans-
mitted in Interaction. Nlelson [271 and Thomsen [371 have studied these so-
called seconcl-order processes. Thomsen also gave a translation of second-
order processes into the 7r-calculus and showed that It preserves operational
behavior. Sanglorgl generalizes this translation to oo-order processes and has
proved that a suitable behavioral equivalence Is preserved in both directions
by the translation. His results are summarized by MIIner [231 and will appear in
Sanglorgi's Ph.D. dissertation [35]. This work on higher order reinforces the
claim of exPressive completeness for the st-calculus.

COnclusion. The Turlng award lecture of Newell and Simon I261 examines the
nature of empirical enquiry in computer science.

fact, restriction is just a distillation of
the notion of local variable declaration
in programming. Thus for the whole
system of Figure 3 we may more ac-
curately write

vx(xl y(YIP)l z(zl) (,

This kind of expression well repre-
sents the spatial or static structure of
interactive systems in general,
though we have only illustrated it for
programs and memory. Diagrams
like Figure 3, which we may call flow
graphs, are quite formal objects. In-
deed, restriction and composition
obey certain equations which define
the algebraic theory of flow graphs.

Dynamic Cons t ruc t ions
Now let us tu rn to the dynamic aspect
of such systems: their behavior. It is
in the dynamics, in fact, that we can
contrast the sequential, hierarchical
control of the X-calculus with the
concurrent, heterarchical control of
CCS. In the X-calculus, all computa-
tion comes down to just one thing,
called reduction--the act of passing
an a rgument to a function; we may
call this the atom of behavior of the X-
calculus. In just the same way, an in-
teraction-the passage of a single
datum between processes--is the
atom of behavior in CCS. We shall
now see how this allows symmetry
between partners and how it reflects
the idea that each process in a com-
munity has persistent identity.

We shall look at this contrast in
terms of the basic computational rule
of each calculus. In each calculus,
systems are built using a binary com-
binator. In the X-calculus the com-
binator is called application and is nei-
ther commutative nor associative.
When one term M is applied to an-
other, N,

M(N)

then the first term M - - t h e operator--
holds control. The operator is com-
mitted to receive N, the operand; if
and when the operator takes the
form of an abstraction Ax.M[x] (where
the square brackets indicate that M
may contain the bound variable x),
then the symbol A represents the
operator's locus of control, and the
following reduction will occur:

(Xx.M[x])(N) ~ M[N]

C O M M U N I C A T I O N S O F T H I I aCM/January 1993/Vol.36, No.1 8 3

l e m e n t s o f I n t e r a c t i o n

(where the brackets on the right indi-
cate that N has replaced x in M). This
is the basic computat ional rule of the
A-calculus, the dynamics of function
application; for many people it is
more familiar as the copy rule of
Algol60, which was der ived from it.
Figure 5 represents this opera t ion
pictorially; note that the ope rand N is
represented by a circle, being a pas-
sive da tum in the r educ t i on - - i t will
only later assume control, as an oper-
ator, when M allows it to do so.

In CCS on the other hand, when
two terms P and Q are composed in
parallel,

PIQ

then both hold control. P may receive
a message from Q, jus t as Q may re-
ceive one f rom P. The re are two so-
called actions which a term may take,

allowing it to interact with another.
When one par tner takes the input
form Ax.P[x] while the other takes the
output form ~V.Q, then we have the
composit ion

Ax.PLxJlXV.Q

in which the par tners have what may
be called complementary loci of control
A and A- - t ha t is, the positive and
negative ends of a channel named A.
Then the following interaction may
O c c u r :

Xx.P[x]lXV.Q---, P[V]lQ

It is a synchronization of the part-
ners ' actions.

But crucially, in concurrency there
a r e many channels, not jus t one; so
the symbol A, which represented the
single locus of control in the A-
calculus, now becomes jus t one of
many channels, perhaps concur-
rently active. CCS uses the simple
names a, b, c for such channels.
Thus we arrive at the basic computa-
tion rule of CCS, shown pictorially in
Figure 6. Computa t ion jus t consists
in the i teration of this single rule,
repeatedly t ransforming an expres-
sion; at any stage the structure of the
expression represents the spatial
configurat ion of the system. The dia-
gram in Figure 6 shows the dynamic
behav io r - - t he passage of a passive
d a t u m - - s u p e r p o s e d on the flow

- ®

BEFORE

M®
®

AFTER

BEFORE

a .

AFTER

Q

F i g u r e S. T h e
x-calCulUS r e c l u c t l o n

(. ~ x . M [x]) N ~ M [N]

F i g u r e 6. T h e
CCS I n t e r a c t i o n

a x . P [x] laV.Q ~ P [v] I Q

graph which represents the spatial
configuration.

Let us look more closely at the dif-
ferences here. First, in the A-calculus
case the second par tne r was merely a
passive datum, but in the CCS case it
yields up its da tum V and continues
an independen t existence. It is ex-
actly this which admits continual
interaction among concurrent pro-
cesses, each retaining its identity.

Second, parallel composit ion is com-
mutative; PIQ means the same as QIP.
In CCS, in contrast to the A-calculus,
e i ther pa r tne r may act as the re-
c e i v e r - a n d indeed that pa r tne r may
later become the transmitter .

Third, parallel composit ion is also
associative; together with commuta-
tivity, this frees the interaction disci-
pline f rom the term structure, which
represents hierarchical control in the
A-calculus. As we saw in the example
of p rog ram-memory interaction, the
control discipline is now de te rmined
by which channels a, b link
which processes.

These details are somewhat tech-
nical. But the focal point is this: The
difference between concurrent and
sequential computa t ion can be con-
centrated in the single basic computa-
tion rule of the respective calculi. By
modifying the notion of reduction
from the A-calculus, we attain a rule
o f interaction for concurrent pro-
cesses, and this is the first stage in
our synthesis between the puri ty of
the functional model and the dynam-
ics of real concurrent systems.

The idea of synchronized interac-
tion as a p rog ramming primitive was
known to Tony Hoare before I ex-
pressed it in algebraic form. The fact
that these steps were taken indepen-
dently, with di f ferent motives, is
some evidence that the idea is a natu-
ral one. Hoare incorpora ted the idea
in his p rog ramming language CSP
and later with colleagues developed a
theory a round it. It provided the
basis for the rendezvous mechanism
of Ada, as well as becoming the atom
of interaction in the p rog ramming
language Occam. My contr ibut ion
was to make interaction the corner-
stone o f an algebraic calculus. The
process algebras developed in the
eighties, such as CCS, CSP, and the
ACP of Bergstra and Klop, have
been the subject of much semantic

84 January 1993/Vo1.36, No.1 / C O M M U N I C A T I O N S O F T H E AI l lM

research. They have also become, or
have grown into, actively used design
tools; in particular, the specification
language Lotos has been widely ap-
plied to communicat ion protocols.

Meaning
I would like to allay the fear that con-
currency, at least in the way I am
treating it, is desperately concrete
and mechanistic. Are there not ab-
stract mathematical things underly-
ing it all, for which we should reserve
the term "process" - - ra the r than dig-
nifying our algebraic expressions
with that name? After all, we have
come to use the term "function" in an
abstract sense, so that when we point
to an expression in the A-calculus and
say "that function," people usually
take us to mean "the mathematical
function denoted by that expression." I f
an expression has no agreed denota-
tion we may feel uncomfortable.

The semantics of processes has a
large and growing literature. It is not
simple; but some exciting progress
has been made. I spoke earl ier about
the possible use of Scott's domains for
concurrent programs, and indeed a
variety of interesting domains are
studied for process algebra. The re
has also been much research on the
meaning of a process as de te rmined
by its observable behavior. The idea is
this: To observe a process is exactly
to interact with it, and two sys tems--
say two process terms in C C S - -
should have the same denotat ion if
and only if we cannot distinguish
them by observation. This research is
largely devoted to classifying the
s t ronger and weaker kinds of obser-
vational distinction which can be
made and to a mathematical charac-
terization in each case. Much has
been achieved; much remains to be
done.

These remarks about observation,
so far, apply equally to sequential
processes; b u t - - a s might be ex-
p e c t e d - c o n c u r r e n c y raises prob-
lems all of its own. One impor tant
topic is the concept of causal indepen-
dence, which is central in Petri net
theory. Now, two processes- -each
having concurrent c o m p o n e n t s - -
may be indistinguishable to an exter-
nal observer, and yet differ in the
causal relationship among their ob-
served actions. I may observe you

falling out of the tree and then ob-
serve the ambulance arriving, but I
still do not know if one caused the
other. Hence observational semantics
ignores causality. But there are also
good reasons for semantic models
which respect causal connec t ion- -
such as the event structures of Nielsen
et al. This topic is too complex to
tackle here; I mention it only to show
that concurrency does indeed raise
new semantic questions.

Whatever mathematical models
are studied, I believe that process cal-
culi provide an essential perspective
for the study. Many people will only
be satisfied with the semantic theory
of concurrent systems w h e n - -
eventua l ly - - i t becomes an abstract
theory as well as a formal one. But to
attain this goal we must first distill
the essence of the dynamics of inter-
action; this is what a formal process
calculus like CCS tries to do.

values
We now embark on the second stage
in a synthesis between the functional
parad igm and the realities of interac-
tion. This time I am concerned with
making a concurrent calculus fully
expressive, within its own conceptual
frame. First, I need to explain how
the A-calculus succeeds in this re-
spect, while CCS and similar concur-
rency calculi fall short. Later we shall
f ind a remedy.

Often people use the A-calculus
informally, simply to derive new op-
erators over familiar data. When dis-
cussing arithmetic, they will write

f = Ax (x 2 + l)
or perhaps

F = AfAx (f(x) + 1)

- - i . e . , they mix the constructions of
the A-calculus with those of ar i thme-
tic, not wishing to code one into the
other. Trea ted thus, the A-calculus is
like some computat ional scaffolding,
up and down which the real workers
climb: data such as numbers, and
opera tors such as squaring, adding,
or differentiating.

This auxiliary use of the A-calculus
is very natural, but hardly makes for
a self-contained model of comput ing
within the functional framework.
Each time we add new types of data
s t ruc tu re - - l ike arrays, lists, t r e e s - -
we are in effect extending the calcu-

lus. But it is impor tant for the under-
s tanding of p rog ramming languages,
for example, that the basic model
which we use to explain them should
be as homogeneous and complete as
possible, requir ing no ad hoc exten-
sion.

Quite remarkably, the A-calculus
does achieve this homogenei ty and
completeness. In its pure form, it
does indeed have full power to rep-
resent data structures and compute
with them; we can do everything with
the scaffolding alone. Church
showed this for arithmetic; B6hm
and others have ex tended it to o ther
forms of data structure. Moreover,
there are type disciplines--notably the
Girard-Reynolds second-order A-
calculus--which allow this to be done
in a control led way, bui lding a uni-
form f ramework for analyzing se-
quential p rog ramming l anguages - -
and their respective type disciplines.

Now, what about concurrency?
Most concurrency formalisms also
provide a scaffolding, of a di f ferent
kind, on which values and operators
can move around; these values and
operators are quite distinct from the
scaffolding itself. Look again at CCS
(Figure 6); in that interaction, the
datum V is actually an expression
standing for something like a
number--quite a dif ferent type of
animal f rom the process expression P.

To under l ine the point, Figure 7
shows a CCS definit ion for a process
Double, which repeatedly inputs a
number along the a channel and out-
puts twice that number on the b
channel. Regarding the short defini-
tion, it contains no less than five dif-
ferent kinds of thing: processes (e.g.,
Double), channels (a, b), variables (x),
operators (x) , and value expressions
(2 × x). And four o f these (all except
operators) a lready occur in the basic
computat ion rule of CCS-- see Fig-
ure 6. Is not this promiscuity exces-
sive?

Well, it is perfectly admissible in a
high-level p rogramming language or
specification language such as Lotos,
where a user expects a rich and re-
dundan t tool kit. But for a truly basic
calculus the situation is less comfort-
able. A basic calculus should impose
as little taxonomy as it can, because
di f ferent higher levels of explanation
will impose different taxonomies.

¢OMMUNICATIONSOFTHEACIR/January 1993/Vo1.36, No.1 8S

l e m e n t s o f I n t e r a c t i o n

Now, the pure A-calculus is built
with just two kinds of thing: terms and
variables. Can we achieve the same
economy for a process calculus? Carl
Hewitt, with his Actors model, re-
sponded to this challenge long ago;
he declared that a value, an operator
on values, and a process should all be
the same kind of thing: an actor. This
goal impressed me, because it implies
the homogeneity and completeness
of expression which we have dis-
cussed. But it was long before I could
see how to attain the goal in terms of
an algebraic calculus. I knew that
CCS fell short; but it would, I hoped,
yield insight to find the rest of the
way.

N a m e s
Recently, building on important in-
sights by Engberg and Nielsen my
colleagues Joachim Parrow and
David Walker and I have found a cal-
culus which has the same kind of in-
ternal completeness as the pure A-
calculus. It is also terse; it is hard to
see how it can be further simplified,
within the tradition of algebraic pro-
cess calculi. We call it the zr-calculus,
and the key idea is naming or refer-
ence. (Perhaps we should not be sur-
prised that we attain greater com-
pleteness of expression by giving
greater weight to naming; for con-
current activity in a system entails the
independent identity of its compo-
nents, and to exploit this identity
requires a means of identification.)

Naming, though so well hidden in
some models (such as the functional
model), is pervasive in practical com-
puting. Th ink of all the variants it
has. In essence, it is just that which
gives access t o . . . well, anything; hut
we tend to think of variables, addresses,
locations, pointers, channels differently

in different contexts--really because
they give access to different things.
In programming languages, ancient
and modern, the variety is striking:
the variables of Algol60, the pointers
of Pascal, the channels of Ada or
Occam, the logic variables of logic
programming, the object references
in object-oriented programming,
and so on. So, in the spirit of Hewitt,
our first step is to demand that all
things denoted by terms or accessed
by names--values , registers, opera-
tors, processes, objects--are the
same kind of thing: they should all be
processes. Thereaf ter we regard ac-
cess-by-name as the raw material of
computation; what we then have to
do is to define means by which pro-
cesses--themselves accessible--ma-
nipulate access.

To get a flavor of this radical
change, look again at the CCS com-
putation rule, Figure 6. In that pic-
ture a, x, and V are of different
kinds: a channel, a variable, a value.
In the at-calculus, the channel and
variable will both be just names, while
a value like V will be aprocess located by
a name. The crucial intuit ion is this: A
value is just a special kind of process,
one which can be repeatedly the sub-
ject of the same observation. So the
expression V will now indeed be in
the same class as any other process
express ion- -and to observe it, there
must be a channel for interaction.
Thus the value V will be located by a
name, say v, just as a memory cell X
(see Figure 3) was located by the
name x. So in the ~r-calculus the com-
putation step takes the form

ax.P[x]lVl-~v.Q ~ P[v]IVIQ

The computation step is shown pic-
torially in Figure 8. In that picture
every capital letter stands for a pro-
cess, while every small letter is a
name. Note also that a name can be
either actively used as a channel (as in
the case of a) or passively mentioned as
a datum (as in the case of x and v).

But in this interaction the value V
is no longer a participant, not even
passively. Thus the simplest way to
present the interaction is as follows:

ax.P[x]l-dv.Q---> P[v]lQ

This, finally, is the basic rule of com-
putation in the at-calculus; it shows
clearly the crucial difference from

CCS-- tha t the transmitted datum is
now '~just" a name, a means of access.
Since names have no structure, the
computation step is truly a tomic- - in
contrast with the A-calculus where
the operand of a reduction may be a
complex datum.

You may well have two reactions to
this. First, you may see nothing new;
you were always aware that pointers
are passed around instead of actual
values, in real down-to-earth com-
puting. I reply that if the elements of
interaction are already familiar from
programming, then it is all for the
be t t e r - - and also, that we shall use
them outside the field of program-
ming as well.

Second, you may object that all this
mechanical business--pointers and
whatnot- -was swept under the car-
pet and was supposed to remain well
hidden, when we began to think of
computing in a properly abstract
way. I agree, to this extent: Although
we think about sequential computing
in a nicely abstract way, we have not
gone very far in that direction for
concurrency. But here is the crux:
On the one hand the notion of refer-
ence refuses to remain hidden, when
we properly confront reality; on the
other hand it seems to resist theoreti-
cal t r ea tmen t - -a t least, it has re-
ceived little. I believe the ~r-calculus
begins to resolve this impasse; it be-
gins to provide a tractable theory for
reference, and thereby also for con-
currency and interaction.

(shall not discuss the ~'-calculus in
any detail. But to show that it ap-
proaches the A-calculus in economy,
let me exhibit the grammar of both
calculi, side by side (see Figures 9 and
10). The alternative action construc-
tion of the It-calculus means- -as in
CSP, CCS, or Occam-- tha t exactly
one alternative will occur. The rep-
lication construction !P roughly
means P[P] as many copies of
P as you like in parallel. We have
already illustrated the other con-
structions.

To see how the calculus works,
recall the mobile telephone network
of Figure 4. We shall model the chan-
nel between a car and a station as two
at-calculus n a m e s - - o n e for talking
and one for switching; see Figure 11.
The figure shows the definition of
the CAR process, parametric on

86 January 1993/Vo1.36, No.l / ¢ O N M U N I C A T I O N $ O F T H E A C R 1

these two channels. There are two
alternative actions for the CAR; it
can talk, or it can switch its channels if
requested by the STATION. (The
CAR is defined recursively here, but
recursion can be derived from repli-
cation in the rr-calculus.) The figure
shows also an expression defining
the whole network. The other com-
ponents are just as easy to define as
the CAR.

The "movement" of the car from
station to station, in this example, is
no different from the "movement" of
the value V modeled in Figure 10.
Thus movement is not confined to
values; movement of all kinds of pro-
cesses among each other can be mod-
eled in this way. The essence of the
or-calculus lies in its technical man-
agement of the interplay between
restriction, which models spatial con-
figuration (e.g., the expression (1)
for Figure 3), with the dynamic varia-
tion of configuration.

To summarize: There are several
reasons to claim generality for the
or-calculus, even in this simple form:

• It gives a direct description of
systems which change their configu-
ration, such as a mobile telephone
network, or a distributed operating
system with its flow of jobs and allo-
cation of resources.
• It allows a uniform way to define
data structures. Thus, it supports a
process algebra like CCS as a higher
level of explanation.
• There is a simple translation of the
A-calculus itself into or-calculus,
which is faithful to computational
behavior. Thus, it supports func-
tional programming as a higher level
of explanation.
• It provides a convenient semantic
substrate for object-oriented pro-
gramming and indeed other pro-
gramming paradigms.
• It is amenable, like the A-calculus,
to type disciplines; this will allow us
to add the taxonomies which are so
important in a tractable semantic
framework.

It was actually the first, the most
concrete, of these five properties
which we first strove to attain: the
power to describe mobility, or chang-
ing configuration. This was the goal
that shaped the ¢r-calculus. It was an
unsolicited delight to find that mobil-

Figure 7.
A doubl ing

process
In CCS

def
Double = ax .b(2 x x). Double

a Double J b

~ a . 4 . _ _ ~ ~ a ~

v [-7-]
BEFORE AFTER

Figure 8.
T h e n - c a l c u l u s
I n t e r a c t i o n
ax.P [x]l Vl~v.O
P [v] l V l O

Figure 9.
T h e x - c a l c u l u s

Figure 10.
A simple
f o r m o f t h e
n - c a l c u l u s

variables x, y, z

terms M : : = x variable
ky.M abstraction
Mi(M2) application

(the occurrence of y is binding)

basic rule of computation (Xy.Ml[y])(M 2) ~ MI[M 2]

Figure 11.
T h e mobi le
t e l e p h o n e
n e t w o r k In t h e
R-ca lcu lus

names x, y, z

action terms A ::= Ez.P
xy. P

send z along x
rece ive any y along x

terms P ::= A I + ... + A n
PIlP2
vyP
~P

alternative action (n _> O)
composition
restriction
replication

(the occurrences of y are binding)
basic rule of computation xy.Pt[y] I xz.P2 -.e pl[z] I P2

t ~ . / j CAR(talk, switch) ~f t~ word. CAR(talk, switch) 7/.w,,c., + switch t. switch s. CAR(t, s)

I STATION, 1 [STATION 2'.

NETWORK d'2 ~ talk 1 V switch1... (CAR(ta/kt, switch 1) I STATION1 I " ' I CONTROL)

¢OMMUNICATIONSOPTImZACM/January 1993/Vol.36, No.1 8 7

l e m e n t s o f I n t e r a c t i o n

ity was, in fact, the key; as soon as this
was technically mastered, the other
properties were found to be present
with no further addition.

C o n c l u s i o n
I have traced a thread in the search
for a basic model of concurrency,
guided by a sequential paradigm. I
have dared to talk about semantics
because I have always hoped that the
right semantic primitives would be
familiar to all of u s - - n o t because we
think about them, but because we nat-
urally cast our thoughts in terms of
them. Whether or not the primitives
I have discussed are the right ones,
they are certainly of that familiar
nature.

You may have been offended by
my persistent reductionism; again and
again I have explained one thing in
terms of another (a value is 'Just" a
process, and so on). I can see no
other way to reach something which
is both general and tractable. But let
me repeat: Many levels of explana-
tion are indispensable. Indeed the
entities at a higher level will certainly
be of greater variety than those lower
d o w n .

I have claimed some generality for
the zr-calculus, though there are cer-
tainly things which it does not handle
directly. It needs much more study.
An important task is to compare it
with Hewitt's Actors; there are defi-
nite points of agreement where we
have followed the intuition of Actors
and also some subtle differences,
such as the treatment of names.
More generally, the ~r-calculus is a
formal calculus, while the Actors
model, in spirit closer to the ap-
proach of physics, sets out to identify
the laws which govern the primitive
concepts of interaction.

Finally, how we can assess, or test,

a model of computing such as a pro-
cess calculus? In an important sense
computer science is indeed an exper-
imental science, even though- -as
Alan Newell and Herbert Simon
point out in their 1975 Tur ing lec-
t u r e - i t may not fit a narrow stereo-
type of the experimental method, for
we certainly test our machines, lan-
guages, and systems in the field. But
then the experimental test bears also
on our basic models, at second re-
move; for ultimately we design, de-
fine, and analyze our artifacts in
terms of these models.

Besides the extrinsic experimental
test, there is the intrinsic mathematical
test. It is hard enough to isolate ideas
which are really basic to computing
practice; it is even harder to find
those which also admit a tractable
theory. It is precisely the conflict be-
tween these two tests which underlies
the dialectic method which I have il-
lustrated. I have tried to show how a
distillation from practice, guided by
an established logical paradigm, can
yield a sharply defined candidate
theory which must now be submitted
to deeper mathematical and deeper
experimental tests.

I believe that computer science
differs little from physics, in this gen-
eral scientific method, even if not in
its experimental criteria. Like many
computer scientists, I hope for a
broad informatical science of phe-
n o m e n a - b o t h manmade and nat-
u r a l - t o match the rich existing phys-
ical science. I shall be happy if the
elementary ideas I have described
make a small step in that direction.

Acknowledgments
I owe much to many people in this
effort, and thank them all; especially
my long-standing colleagues Rod
Burstall and Gordon Plotkin from
whom I have learned many things
and received great support, David
Park who strongly influenced me at
an important point and encouraged
me all along, and Tony Hoare, Carl-
Adam Petri, and Dana Scott whose
work has been an inspiration to me.
References r.I

1. Abramsky, S. A domain equation for
bisimulation. J. Inf. Comput. 92
(1991), 161-218.

2. Agha, G.A. Actors: A Model of Concur-
rent Computation in Distributed Systems.
MIT Press, Cambridge, Mass., 1986.

3. Astesiano, E. and Zucca, E. Paramet-

ric channels via label expressions in
CCS.J. Theor. Comput. Sci. 33 (1984),
45-64.

4. Baeten, J.C.M. and Weijland, W.P.
Process Algebra. Cambridge University
Press, Cambridge, Mass., 1990.

5. Barendregt, H.P. The Lambda Calcu-
lus. North Holland, Amsterdam,
1981.

6. B6hm, C. and Berarducci, A. Auto-
matic synthesis of typed A-programs
on term algebras. J. Theor. Comput.
Sci. 39 (1985), 135-154.

7. Brinksma, E. On the design of Ex-
tended LOTOS, A specification lan-
guage for open distributed systems.
Ph.D. dissertation, Univ. of Twente,
1988.

8. Brookes, S.D., Hoare, C.A.R., and
Roscoe, A.W. A theory of communi-
cating sequential processes. J. ACM
31 (1984), 560-599.

9. Church, A. The Calculi of Lambda Con-
version. Princeton University Press,
Princeton, N.J., 1946.

10. Engberg, U. and Nielsen, M. A calcu-
lus of communicating systems with
label passing. Rep. DAIMI PB-208,
Computer Science Dept., Univ. of
/~rhus, /~rhus, Denmark, 1986.

11. Girard,J.-Y. The system F of variable
types, fifteen years later. J. Theor.
Comput. Sci. 45 (1986), 159-192.

12. Goldber, A. and Robson, D. Smalltalk-
80: The Language and its Implemen-
tation. Addison-Wesley, Reading,
Mass., 1983.

13. Gunter, C.A. and Scott, D.S. Seman-
tic domains. In Handbook of Theoretical
Computer Science, vol A. Elsevier, New
York, 1990, pp. 633-674.

14. Hennessy, M. Algebraic Theory of Pro-
cesses. MIT Press, Cambridge, Mass.,
1988.

15. Hewitt, C.E., Bishop, P., and Steiger,
R. A universal modular Actor formal-
ism for artificial intelligence. In Pro-
ceedings of the International Joint Con-
ference on Artificial Intelligence. 1973,
pp. 235-245.

16. Hoare, C.A.R. Communicating se-
quential processes. Commun. ACM 21
(1978), 666-677.

17. Hoare, C.A.R. Communicating Sequen-
tial Processes. Prentice-Hall, Engle-
wood Cliffs, N.J., 1985.

18. Honda, K. and Tokoro, M. An object
calculu s for asynchronous communi-
cation. In Proceedings of the European
Conference on Object-Oriented Program-
ming. Lecture Notes in Computer Sci-
ence, vol. 512. Springer-Verlag, New
York, 1991, pp. 133-147.

19. Kennaway, J.R. and Sleep, M.R. Syn-
tax and informal semantics of DyNe,
a parallel language. In Lecture Notes in
Computer Science, vol. 207. Springer-
Verlag, New York, 1985, pp. 222-

8 8 January 1993/Vol.36, No.1 / C O M M U N I C A T I O N S O F T H I I A C M

230.
20. Milner, R. Flow graphs and flow alge-

bras. ACM 26, 4 (Oct. 1979), 794-
818.

21. Milner, R. A Calculus of Communicat-
ing Systems. Lecture Notes in Com-
puter Science, vol. 92. Springer-
Verlag, New York, 1980.

22. Milner, R. Communication and Concur-
rency. Prentice-Hall, Englewood
Cliffs, N.J., 1989.

23. Milner, R. The polyadic ~r-calculus: A
tutorial. Res. Rep. LFCS-91-180, Lab.
for Foundations of Computer Sci-
ence, Computer Science Dept., Edin-
burgh Univ., 1991.

24. Milner, R. Functions as processes.
Res. Rep. No. 1154, INRIA, Sophia
Antipolis, 1990.

25. Milner, R., Parrow, J. and Walker, D.
A calculus of mobile processes. Rep.
ECS-LFCS-89-85 and -86, Lab. for
Foundations of Computer Science,
Computer Science Dept., Edinburgh
Univ., 1989.

26. Newell, A. and Simon, H.A. Com-
puter science as empirical enquiry:
Symbols and search. Commun. ACM
19 (1976), 113-126.

27. Nielson, F. The typed a-calculus with
first-class processes. In Proceedings of
PARLE 89. Lecture Notes in Com-
puter Science, vol. 366. Springer-
Verlag, New York, 1989.

28. Nielsen, M., Plotkin, G.D. and
Winskel, G. Petri nets, event struc-
tures and domains. J. Theor. Comput.
Sci. 13 (1981).

29. Orava, F. and Parrow, J. An algebraic
verification of a mobile network. In-
ternal Rep., SICS, Sweden.

30. Park, D.M.R. Concurrency and auto-
mata on infinite sequences. In Lecture
Notes in Computer Science, vol. 104.
Springer-Verlag, New York, 1980.

31. Petri, C.A. Communikation mit
Automaten. Schriften des Institutes
ftir Instrumentelle Mathematik,
Bonn, 1962. In German.

32. Plotkin, G.D. A powerdomain con-
struction. SlAM J. Comput. 5 (1976),
452-487.

33. Reisig, W. Petri Nets. EATCS Mono-
graphs on Theoretical Computer Sci-
ence, W. Brauer, G. Rozenberg, A.
Salomaa, Eds. Springer-Verlag, New
York, 1983.

34. Reynolds, J.C. Towards a theory of
type structure. In Lecture Notes in
Computer Science, vol. 19. Springer-
Verlag, New York, 1974, pp. 408-
425.

35. Sangiorgi, D. Forthcoming Ph.D. the-
sis. Univ. of Edinburgh, 1992.

36. Tennent , R.D. Principles of Program-
mingLanguages. Prentice-Hall, Engle-
wood Cliffs, N.J., 1981.

37. Thomsen, B. Calculi for higher-

order communicating systems. Ph.D.
dissertation, Imperial College, Lon-
don Univ., 1990.

38. Walker, D.J. rr-calculus semantics of
object-oriented programming lan-
guages. In Proceedings of the Conference
on Theoretical Aspects of Computer Soft-
ware (Japan). Lecture Notes in Com-
puter Science, vol. 526. Springer-
Verlag, New York, 1991, pp. 532-
547.

CR Categories and Subject Descrip-
tors: D.3.1 [Programming languages]:
Formal Definitions and T h e o r y - -
semantics; D.3.2 [Programming lan-
guages]: Language Classifications--
concurrent, distributed and parallel lan-
guages; object-oriented languages; F. 1.2
[Computation by Abstract Devices]:
Modes of Computation--parallelism and
concurrency; F.3.2 [Logic and Meanings of
Programs]: Semantics of Programming
Languages--algebraic approaches to seman-
tics; operational semantics; F.3.3 [Logics and
Meanings of Programs]: Studies of Pro-
gram Constructs--control primitives; func-
tional constructs; F.4.1 [Mathematical
Logic and Formal Languages]: Mathe-

matical Logic--/ambda calculus and related
systems

General Terms: Languages, Theory
Additional Keywords and Phrases:

CCS, interaction, naming and reference,
pi calculus, process algebra, process calcu-
lus, reduction rule

About the Author:
ROBIN MILNER is professor of compu-
tation theory in the Computer Science
depar tment at the University of Edin-
burgh, where he has worked for 20 years.
Before that he researched for two years in
the Artificial Intelligence Laboratory at
Stanford University. In 1986 he became
founding director of the Laboratory for
Foundations of Computer Science at
Edinburgh. Currently he holds a five-
year senior research fellowship from the
UK Science and Engineering Research
Council.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©ACMO002-0782/93/0100-090 $1.50

experts with tile mr)st intriguing, funny, or just
downright strange computer trivia you can think of.
It's tile 1993 Computer Bowl, being held on May 14,
1993 in San Jose, California. Two teams made up of
indust W notables go head to head in this grueling
COlnpetition. The examiner is again Bill G a t e s (w h o
on his days off runs a small company in Washington
state). So submit as many questions as you want,
but do it soon - - only a select number are chosen.
If we use one, we'll list you in the 1993 Computer
Bowl program and you'll get a videotape of the
whole event. Send your questions - - and answers
- - in advance to: The Computer Bowl Project
Manager, Tile Computer Museum, 300 Congress
Street, Boston, MA 02210. And think hard.
Mr. Gates is waiting.

,,d

For sponsorship and ~-~t ~ ' - T / I E ~
ticket inforlnation, call

(6 1 7) 4 2 6 - 2 8 0 0 x 3 4 6 - r - - c ° ~ m t = r n .

:[l ' lotller c o m p a l] y n a l l l e d : l t lc l fruit .

