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An excessive preoccupation with formalism is impeding the development of 
computer science. Form-content confusion is discussed relative to three areas: theory 
of computation, programming languages, and education. 

The trouble with computer science today is an obsessive concern 
with form instead of content. 

No, that is the wrong way to begin. By any previous standard the 
vitality of computer science is enormous; whaf other intellectual area 
ever advanced so far in twenty years? Besides, the theory of computa- 
tion perhaps encloses, in some way, the science of form, so that the 
concern is not so badly misplaced. Still, I will argue that an excessive 
preoccupation with formalism is impeding our development. 

Before entering the discussion proper, I want to record the satisfac- 
tion my colleagues, students, and I derive from this Turing award. The 
cluster of questions, once philosophical but now scientific, surrounding 
the understanding of intelligence was of paramount concern to Alan 
Turing, and he along with a few other thinkers--notably Warren S. 
McCulloch and his young associate, Walter Pitts -- made many of the 
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early analyses that led both to the computer itself and to the new 
technology of artificial intelligence. In recognizing this area, this award 
should focus attention on other work of my own scientific family-- 
especially Ray Solomonoff, Oliver Selfridge, John McCarthy, Allen 
Newell, Herbert Simon, and Seymour Papert, my closest associates in 
a decade of work. Papert's views pervade this essay. 

This essay has three parts, suggesting form-content confusion in 
theory of computation, in programming languages, and in education. 

1 
Theory 

of Computation 
To build a theory, one needs to know a lot about the basic phenom- 

ena of the subject matter. We simply do not know enough about these, 
in the theory of computation, to teach the subject very abstractly. 
Instead, we ought to teach more about the particular examples we now 
understand thoroughly, and hope that from this we will be able to 
guess and prove more general principles. I am not saying this just to 
be conservative about things probably true that haven't been proved 
yet. I think that many of our beliefs that seem to be common sense 
are false. We have bad misconceptions about the possible exchanges 
between time and memory, trade-offs between time and program 
complexity, software and hardware, digital and analog circuits, serial 
and parallel computations, associative and addressed memory, and 
SO o n .  

It is instructive to consider the analogy with physics, in which 
one can organize much of the basic knowledge as a collection of 
rather compact conservation laws. This, of course, is just one kind 
of description; one could use differential equations, minimum prin- 
ciples, equilibrium laws, etc. Conservation of energy, for example, 
can be interpreted as defining exchanges between various forms of 
potential and kinetic energies, such as between height and velocity 
squared, or between temperature and pressure-volume. One can base 
a development of quantum theory on a trade-off between certainties 
of position and momentum, or between time and energy. There is 
nothing extraordinary about this; any equation with reasonably smooth 
solutions can be regarded as defining some kind of a trade-off among 
its variable quantities. But there are many ways to formulate things 
and it is risky to become too attached to one particular form or law 
and come to believe that it is the real basic principle. See Feynman's 
[1] dissertation on this. 

Nonetheless, the recognition of exchanges is often the conception 
of a science, if quantifying them is its birth. What do we have, in 
the computation field, of this character? In the theory of recursive 
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functions, we have the observation by Shannon [2] that any ~hring 
machine  with Q states and R symbols is equivalent to one with 2 
states and nQR symbols, and to one with 2 symbols and n'QR states, 
where  n and n' are small numbers .  Thus the state-symbol product  QR 
has an almost invariant quality in classifying machines. Unfortunately, 
one cannot  identify the product  with a useful measure  of machine 
complexity because this, in turn, has a trade-off with the complexity 
of the encoding process for the m a c h i n e s - - a n d  that trade-off seems 
too inscrutable for useful application. 

Let us consider a more elementary, but  still puzzling, trade-off, 
that b e t w e e n  addition and multiplication. How many  multiplications 
does it take to evaluate the 3 × 3 determinant? If we write out the 
expansion as six triple-products, we need twelve multiplications. If 
we collect factors, using the distributive law, this reduces to nine. 
What  is the min imum number,  and how does one prove it, in this and 
in the n x n case? The important  point is not that we need the answer. 
It is that we do not know how to tell or prove that proposed answers 
are correct! For a particular formula, one could perhaps use some 
sort of exhaustive search, but  that wouldn ' t  establish a general rule. 
One of our  prime research goals should be to develop methods to 
prove that particular procedures  are computat ional ly  minimal, in 
various senses. 

A startling discovery was made about multiplication itself in the 
thesis of Cook [3], which uses a result of Toom; it is discussed in Knuth 
[4]. Consider the ordinary algorithm for multiplying decimal numbers:  
for two n-digit numbers  this employs n 2 one-digit products. It is usually 
supposed that this is minimal. But suppose we write the numbers  in 
two halves, so that the product  is N = (@ A + B) (@ C + D), where @ 

stands for multiplying by 10 "/2 . (The left-shift operation is considered 
to have negligible cost.) Then  one can verify that 
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N -= @@AC + BD + @(A + B) (C +D) - @(AC + BD). 

This involves only three half-length multiplications, instead of the 
four that one might suppose were needed.  For large n, the reduction 
can obviously be reapplied over and over to the smaller numbers.  The 
price is a growing number  of additions. By compounding this and other 
ideas, Cook showed that for any E and large enough n, multiplication 
requires less than n 1 +~ products,  instead of the expected n 2. Similarly, 
V. Strassen showed recently that to multiply two m x m matrices, the 
number of products could be reduced to the order of m 1°g2 7 when  it was 
always believed that the number  must  be cub ic - -because  there are m 2 
terms in the result and each would seem to need a separate inner 
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product  with m multiplications. In both cases ordinary intuition has 
been wrong for a long time, so wrong that apparent ly no one looked 
for better methods. We still do not have a set of proof  methods  ade- 
quate for establishing exactly what  is the min imum trade-off exchange, 
in the matrix case, between multiplying and adding. 

The multiply-add exchange may not seem vitally important  in 
itself, but  if we cannot  thoroughly unders tand something so simple, 
we can expect serious trouble with anything more complicated. 

Consider another trade-off, that between memory  size and computa- 
tion time. In our book [5], Papert and I have posed a simple question: 
given an arbitrary collection of n-bit words, how many  references to 
memory  are required to tell which of those words is nearest 1 {in number  
of bits that agree) to an arbi t rary given word? Since there are many  
ways to encode the "library" collection, some using more memory  than 
others, the quest ion stated more  precisely is: how must  the m e m o r y  
size grow to achieve a given reduct ion in the number  of m em o ry  
references? This much  is trivial: if m e m o r y  is large enough, only one 
reference is required, for we can use the quest ion itself as address, and 
store the answer in the register so addressed. But if the m e m o r y  is just  
large enough to store the information in the library, then one has to 
search all of i t - -and  we do not know any intermediate results of any value. 
It is surely a fundamental  theoretical problem of information retrieval, 
yet no one seems to have any idea about how to set a good lower bound 
on this basic trade-off. 

Another  is the seria]~parallel exchange. Suppose that we had n 
computers  instead of just one. How much  can we speed up what  kinds 
of calculations? For some, we can surely gain a factor of n. But these 
are rare. For others, we can gain log n, but  it is hard to find any or 
to prove what  are their  properties.  And for most, I think, we can 
gain hardly anything; this is the case in which  there are many  highly 
branched conditionals, so that look-ahead on possible branches  will 
usually be wasted. We know almost nothing about this; most  people 
think, with surely incorrect  optimism, that parallelism is usually a 
profitable way to speed up most computations.  

These are just a few of the poorly unders tood questions about  
computat ional  trade-offs. There  is no space to discuss others, such as 
the digital-analogquestion.  {Some problems about local versus global 
computations are outlined in [5].) And we know very  little about trades 
be tween numerical  and symbolic calculations. 

There is, in today's computer  science curricula, very  little at tention 
to what  is known about such questions; almost all their t ime is devoted 
to formal classifications of syntactic language types, defeatist un- 
solvability theories, folklore about systems programming, and generally 
trivial fragments of "optimization of logic des ign" - - the  latter often in 

For identifying an exact match, one can use hash-coding and the problem is reasonably 
well understood. 
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situations where the art of heuristic programming has far outreached 
the special-case "theories" so grimly taught and tested--and invocations 
about programming style almost sure to be outmoded before the student 
graduates. Even the most seemingly abstract courses on recursive 
function theory and formal logic seem to ignore the few known useful 
results on proving facts about compilers or equivalence of programs. 
Most courses treat the results of work in artificial intelligence, some 
now fifteen years old, as a peripheral collection of special applications, 
whereas they in fact represent one of the largest bodies of empirical 
and theoretical exploration of real computational questions. Until all 
this preoccupation with form is replaced by attention to the substan- 
tial issues in computation, a young student might be well advised 
to avoid much of the computer science curricula, learn to program, 
acquire as much mathematics and other science as he can, and study the 
current literature in artificial intelligence, complexity, and optimization 
theories. 

I ~) (i ~) 
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2 
Programming 

Languages 
Even in the field of programming languages and compilers, there 

is too much concern with form. I say "even" because one might 
feel that this is one area in which form ought to be the chief concern. 
But let us consider two assertions: {1) languages are getting so they 
have too much syntax, and (21 languages are being described with 
too much syntax. 

Compilers are not concerned enough with the meanings of expres- 
sions, assertions, and descriptions. The use of context-free grammars 
for describing fragments of languages led to important advances in 
uniformity, both in specification and in implementation. But although 
this works well in simple cases, attempts to use it may be retarding 
development in more complicated areas. There are serious problems 
in using grammars to describe self-modifying or self-extending 
languages that involve execution, as well as specifying, processes. 
One cannot describe syntactically--that is, statically- the valid expres- 
sions of a language that is changing. Syntax extension mechanisms 
must be described, to be sure, but if these are given in terms of a 
modern pattern-matching language such as SNOBOL, CONVERT [6], 
or MATCHLESS [7], there need be no distinction between the parsing 
program and the language description itself. Computer languages 
of the future will be more concerned with goals and less with pro- 
cedures specified by the programmer. The following arguments are 
a little on the extreme side but, in view of today's preoccupation with 
form, this overstepping will do no harm. {Some of the ideas are due 
to C. Hewitt and T. Winograd.] 
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2.1 
Syntax 

Is Often Unnecessary 
One can survive with much less syntax than is generally realized. 

Much of programming syntax is concerned with suppression of paren- 
theses or with emphasis of scope markers. There are alternatives 
that have been much underused. 

Please do not think I am against the use, at the human interface, 
of such devices as infixes and operator precedence. They have their 
place. But their importance to computer science as a whole has been 
so exaggerated that it is beginning to corrupt the youth. 

Consider the familiar algorithm for the square root, as it might 
be written in a modern algebraic language, ignoring such matters as 
declarations of data types. One asks for the square root of A, 
given an initial estimate X and an error limit E. 

DEFINE SQRT(A, X,E): 
if ABS(A - X • X) < E then X else SQRT(A, (X + A + X) + 2, E). 

In an imaginary but recognizable version of LISP {see Levin [8] or 
Weissman [9]), this same procedure might be written: 

(DEFINE (SQRT AXE) 
(IF (LESS (ABS ( - A  (. X X))) E) THEN X 
E L S E ( S Q R T A ( ÷ ( +  X ( + A X ) ) 2 )  E))) 

Here, the function names come immediately inside their parentheses. 
The clumsiness, for humans, of writing all the parentheses is evident; 
the advantages of not having to learn all the conventions, such as 
that (X+A +X)  is ( + X ( ÷ A X ) )  and not ( ÷ ( + X A )  X), is often 
overlooked. 

It remains to be seen whether a syntax with explicit delimiters is 
reactionary, or whether it is the wave of the future. It has important 
advantages for editing, interpreting, and for creation of programs by other 
programs. The complete syntax of LISP can be learned in an hour or 
so; the interpreter is compact and not exceedingly complicated, and 
students often can answer questions about the system by reading the 
interpreter program itself. Of course, this will not answer all questions 
about real, practical implementation, but neither would any feasible 
set of syntax rules. Furthermore, despite the language's clumsiness, 
many frontier workers consider it to have outstanding expressive power. 
Nearly all work on procedures that solve problems by building and 
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modifying hypotheses have been written in this or related languages. 
Unfortunately, language designers are generally unfamiliar with this 
area, and tend to dismiss it as a specialized body of "symbol- 
manipulation techniques." 

Much can be done to clarify the structure of expressions in such 
a "syntax-weak" language by using indentation and other layout devices 
that are outside the language proper. For example, one can use a 
"postponement" symbol that belongs to an input preprocessor to rewrite 
the above as 

1 9 1~ 9 

' I  u , i  n }~  
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DEFINE (SQRT AXE) ~ .  
IF ~ THEN X ELSE ~ . 

LESS (ABS ~ ) E. 
--A (* XX). 

SQRT A ~ E. 

+X (+AX) 

where the dot means ")(" and the arrow means "insert here the next 
expression, delimited by a dot, that is available after replacing (recur- 
sively) its own arrows." The indentations are optional. This gets a 
good part of the effect of the usual scope indicators and conventions 
by two simple devices, both handled trivially by reading programs, 
and it is easy to edit because subexpressions are usually complete on 
each line. 

To appreciate the power and limitations of the postponement 
operator, the reader should take his favorite language and his favorite 
algorithms and see what happens. He will find many choices of what 
to postpone, and he exercises judgment about what to say first, which 
arguments to emphasize, and so forth. Of course, t~ is not the answer 
to all problems; one needs a postponement device also for list fragments, 
and that requires its own delimiter. In any case, these are but steps 
toward more graphical program-description systems, for we will not 
forever stay confined to mere strings of symbols. 

Another expository device, suggested by Dana Scott, is to have 
alternative brackets for indicating right-to-left functional composition, 
so that one can write (((x)h)g)f instead off(g(h(x))) when one wants 
to indicate more naturally what happens to a quantity in the course 
of a computation. This allows different "accents," as inf((h(x))g), which 
can be read: "Compute f o r  what you get by first computing h(x) and 
then applying g to it." 

The point is better made, perhaps, by analogy than by example. In 
their fanatic concern with syntax, language designers have become too 
sentence oriented. With such devices as !~ , one can construct objects 
that are more like paragraphs, without failing all the way back to 
flow diagrams. 
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Today's high level programming languages offer little expressive 
power in the sense of flexibility of style. One cannot control the 
sequence of presentation of ideas very much without changing the 
algorithm itself. 

2.2 

Efficiency 
and Understanding Programs 

What is a compiler for? The usual answers resemble "to translate 
from one language to another" or "to take a description of an algorithm 
and assemble it into a program, filling in many small details." For the 
future, a more ambitious view is required. Most compilers will be 
systems that "produce an algorithm, given a description of its effect." 
This is already the case for modern picture-format systems; they do 
all the creative work, while the user merely supplies examples of the 
desired formats: here the compilers are more expert than the users. 
Pattern-matching languages are also good examples. But except for 
a few such special cases, the compiler designers have made little 
progress in getting good programs written. Recognition of common 
subexpressions, optimization of inner loops, allocation of multiple 
registers, and so forth, lead but to small linear improvements in 
efficiency--and compilers do little enough about even these. Automatic 
storage assignments can be worth more. But the real payoff is in analysis 
of the computational content of the algorithm itself, rather than the way 
the programmer wrote it down. Consider, for example: 

DEFINE FIB(N): if N= 1 then 1, if N=2 then 1, 
else FIB(N-1) + FIB(N-2). 

This recursive definition of the Fibonacci numbers 1, 1, 2, 3, 5, 8, 
13," • • can be given to any respectable algorithmic language and will 
result in the branching tree of evaluation steps shown in Figure 1. 

F(6) 

F(5) F(4) 

F(4) F(3) F(3) FF(2) 

F(3) F(2) F(2) F(1) F(2) F(1) 

F(2) F(1) 
FIGURE 1 
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One sees that the amount of work the machine will do grows 
exponentially with N. (More precisely, it passes through the order of 
FIB(N) evaluations of the definition!) There are better ways to compute 
this function. Thus we can define two temporary registers and evaluate 
FIB(N1 1) in 

I 9 (~ 9 
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DEFINE FIB(NAB): if N= 1 then A else FIB(N- 1A +BA). 

which is singly recursive and avoids the branching tree, or even use 

LOOP 

A=0 
B = I  
SWAP AB 
if N = 1 return A 
N = N - 1  
B = A + B  
goto LOOP 

Any programmer will soon think of these, once he sees what happens 
in the branching evaluation. This is a case in which a "course-of values" 
recursion can be transformed into a simple iteration. Today's compilers 
don't recognize even simple cases of such transformations, although 
the reduction in exponential order outweighs any possible gains in local 
"optimization" of code. It is no use protesting either that such gains 
are rare or that such matters are the programmer's responsibility. If 
it is important to save compiling tme, then such abilities could be 
excised. For programs written in the pattern-matching languages, for 
example, such simplifications are indeed often made. One usually wins 
by compiling an efficient tree-parser for BNF system instead of 
executing brute force analysis-by-synthesis. 

To be sure, a systematic theory of such transformations is difficult. 
A system will have to be pretty smart to detect which transformations 
are relevant and when it pays to use them. Since the programmer 
already knows his intent, the problem would often be easier if the 
proposed algorithm is accompanied (or even replaced) by a suitable 
goal-declaration expression. 

To move in this direction, we need a body of knowledge about 
analyzing and synthesizing programs. On the theoretical side there is 
now a lot of activity studying the equivalence of algorithms and 
schemata, and on proving that procedures have stated properties. On 
the practical side the works of W. A. Martin [10] and J. Moses [11] 
illustrate how to make systems that know enough about symbolic 
transformations of particular mathematical techniques to significantly 
supplement the applied mathematical abilities of their users. 
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There is no practical consequence to the fact that the program- 
reduction problem is recursively unsolvable, in general. In any case 
one would expect programs eventually to go far beyond human ability 
in this activity and make use of a large body of program transforma- 
tions in formally purified forms. These will not be easy to apply directly. 
Instead, one can expect the development to follow the lines we have 
seen in symbolic integration, e.g., as in Slagle [12] and Moses [11]. 
First a set of simple formal transformations that correspond to the 
elementary entries of a Table of Integrals was developed. On top of these 
Slagle built a set of heuristic techniques for the algebraic and analytic 
transformation of a practical problem into those already understood 
elements; this involved a set of characterization and matching pro- 
cedures that might be said to use "pattern recognition." In the system 
of Moses both the matching procedures and the transformations were 
so refined that, in most practical problems, the heuristic search strategy 
that played a large part in the performance of Slagle's program became 
a minor augmentation of the sure knowledge and its skillful applica- 
tion comprised in Moses' system. A heuristic compiler system will 
eventually need much more general knowledge and common sense than 
did the symbolic integration systems, for its goal is more like making 
a whole mathematician than a specialized integrator. 

2 .3  
D e s c r i b i n g  

P r o g r a m m i n g  S y s t e m s  
No matter how a language is described, a computer must use a pro- 

cedure to interpret it. One should remember that in describing a language 
the main goal is to explain how to write programs in it and what such 
programs mean. The main goal isn't to describe the syntax. 

Within the static framework of syntax rules, normal forms, Post 
productions, and other such schemes, one obtains the equivalents of 
logical systems with axioms, rules of inference, and theorems. To design 
an unambiguous syntax corresponds then to designing a mathematical 
system in which each theorem has exactly one proof! But in the 
computational framework, this is quite beside the point. One has an 
extra ingredient--control--that lies outside the usual framework of a 
logical system; an additional set of rules that specify when a rule of 
inference is to be used. So, for many purposes, ambiguity is a 
pseudoproblem. If we view a program as a process, we can remember 
that our most powerful process-describing tools are programs 
themselves, and they are inherently unambiguous. 

There is no paradox in defining a programming language by a 
program. The procedural definition must be understood, of course. One 
can achieve this understanding by definitions written in another 
language, one that may be different, more familiar, or simpler than 
the one being defined. But it is often practical, convenient, and proper 
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to use the same language! For to understand the definition, one needs 
to know only the working of that particular program, and not all 
implications of all possible applications of the language. It is this 
particularization that makes bootstrapping possible, a point that often 
puzzles beginners as well as apparent authorities. 

Using BNF to describe the formation of expressions may be retarding 
development of new languages that smoothly incorporate quotation, 
self-modification, and symbolic manipulation into a traditional 
algorithmic framework. This, in turn, retards progress toward problem- 
solving, goal-oriented programming systems. Paradoxically, though 
modern programming ideas were developed because processes were 
hard to depict with classical mathematical notations, designers are turn- 
ing back to an earlier form--the equation--in just the kind of situation 
that needs program. In Section 3, which is on education, a similar situa- 
tion is seen in teaching, with perhaps more serious consequences. 

3 
Learning, Teaching, 

and the "New Mathematics" 
Education is another area in which the computer scientist has 

confused form and content, but this time the confusion concerns his 
professional role. He perceives his principal function to provide pro- 
grams and machines for use in old and new educational schemes. Well 
and good, but I believe he has a more complex responsibility--to work 
out and communicate models of the process of education itself. 

In the discussion below, I sketch briefly the viewpoint Ideveloped 
with Seymour Papert) from which this belief stems. The following 
statements are typical of our view: 

-- To help people learn is to help them build, in their heads, various 
kinds of computational models. 

--This can best be done by a teacher who has, in his head, a 
reasonable model of what is in the pupil's head. 

-- For the same reason the student, when debugging his own models 
and procedures, should have a model of what he is doing, and must 
know good debugging techniques, such as how to formulate simple but 
critical test cases. 

--It will help the student to know something about computational 
models and programming. The idea of debugging 2 itself, for example, 

ZTuring was  quite good at debugging hardware .  He would  leave the power  on, so as not 
to lose the "feel" of the thing. Everyone does that  today, but  it is not the same thing now 
that the circuits  all work  on three or five volts. 
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is a very powerful concept--in contrast to the helplessness promoted 
by our cultural heritage about gifts, talents, and aptitudes. The latter 
encourages "I'm not good at this" instead of "How can I make myself 
better at it?" 

These have the sound of common sense, yet they are not among 
the basic principles of any of the popular educational schemes such as 
"operant reinforcement," "discovery methods," audio-visual synergism, 
etc. This is not because educators have ignored the possibility of mental 
models, but because they simply had no effective way, before the begin- 
ning of work on simulation of thought processes, to describe, construct, 
and test such ideas. 

We cannot digress here to answer skeptics who feel it too 
simpleminded (if not impious, or obscene) to compare minds with 
programs. We can refer many such critics to Turing's paper [13]. For 
those who feel that the answer cannot lie in any machine, digital 
or otherwise, one can argue [14] that machines, when they become 
intelligent, very likely will feel the same way. For some overviews of 
this area, see Feigenbaum and Feldman [15] and Minsky [16]; one can 
keep really up-to-date in this fast-moving field only by reading the 
contemporary doctoral theses and conference papers on artificial 
intelligence. 

There is a fundamental pragmatic point in favor of our propositions. 
The child needs models: to understand the city he may use the organism 
model; it must eat, breathe, excrete, defend itself, etc. Not a very good 
model, but useful enough. The metabolism of a real organism he can 
understand, in turn, by comparison with an engine. But to model his 
own self he cannot use the engine or the organism or the city or the 
telephone switchboard; nothing will serve at all but the computer with 
its programs and their bugs. Eventually, programming itself will become 
more important even than mathematics in early education. Nevertheless 
I have chosen mathematics as the subject of the remainder of this paper, 
partly because we understand it better but mainly because the prejudice 
against programming as an academic subject would provoke too much 
resistance. Any other subject could also do, I suppose, but mathematical 
issues and concepts are the sharpest and least confused by highly 
charged emotional problems. 

3.1 

M a t h e m a t i c a l  P o r t r a i t  

o f  a S m a l l  C h i l d  

Imagine a small child of between five and six years, about to enter 
the first grade. If we extrapolate today's trend, his mathematical educa- 
tion will be conducted by poorly oriented teachers and, partly, by poorly 
programmed machines; neither will be able to respond to much beyond 
"correct" and "wrong" answers, let alone to make reasonable inter- 
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pretations of what  the child does or says, because nei ther  will contain 
good models of the children, or good theories of children's intellectual 
development.  The child will begin with simple arithmetic, set theory, 
and a little geometry; ten years later he will know a little about the 
formal theory of the real numbers,  a little about linear equations, a 
little more about geometry, and almost nothing about cont inuous and 
limiting processes. He will be an adolescent with little taste for analytical 
thinking, unable to apply the ten years' experience to understanding 
his new world. 

Let us look more closely at our young child, in a composite picture 
drawn from the work of Piaget and other observers of the child's mental 
construction. 

Our child will be able to say "one, two, three . . . .  " at least up 
to thir ty and probably up to a thousand. He will know the names of 
some larger numbers  but will not be able to see, for example, w h y  
ten thousand is a hundred  hundred.  He will have serious difficulty 
in counting backwards unless he has recent ly  become very  interested 
in this. {Being good at it would make simple subtraction easier, and 
might be worth  some practice.) He doesn't  have much feeling for odd 
and even. 

He can count  four to six objects with perfect  reliability, but  he will 
not get the same count  every t ime with fifteen scattered objects. He 
will be annoyed with this, because he is quite sure he should get the 
same number  each time. The observer  will therefore think the child 
has a good idea of the number  concept  but  that he is not too skillful 
at applying it. 

However,  important  aspects of his concept  of number  will not be 
at all secure by adult standards. For example, when  the objects are 
rearranged before his eyes, his impression of their quanti ty will be 
affected by the geometric arrangement.  Thus he will say that there are 
fewer x's than y's in: 

X X X X X X X  

Y Y Y Y Y Y Y  

and when  we move the x's to 

X X X X X X X  

Y Y Y Y Y Y Y  

he will say there are more x's than y's. To be sure, he is answering [in 
his own mind) a different quest ion about size, quite correctly, but this 
is exactly the point; the immutabil i ty of the number,  in such situations, 
has little grip on him. He cannot use it effectively for reasoning although 
he shows, on questioning, that he knows that the number  of things 
cannot  change simply because they are rearranged. Similarly, when  
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water  is poured  from one glass to another  (Figure 2(a)), he will say 
that there is more  water  in the tall jar than in the squat one. He will 
have poor estimates about plane areas, so that we will not be able to 
find a context in which he treats the larger area in Figure 2 (b) as four 
t imes the size of the smaller one. 

(a) 

£ A 
(b) (c) 

FIGURE 2 

When he is an adult, by the way, and is given two vessels, one twice 
as large as the other, in all dimensions (Figure 2 (c)), he will think the 
one holds about four times as much as the other; probably he will never 
acquire bet ter  estimates of volume. 

As for the numbers  themselves, we know little of what  is in his mind. 
According to Galton [17], thir ty children in a hundred  will associate 
small numbers  with definite visual locations in the space in front of 
their body image, arranged in some idiosyncratic manner  such as that 
shown in Figure 3. They  will probably still retain these as adults, and 
may use them in some obscure semiconscious way to r emember  
te lephone numbers;  they will probably grow different spatio-visual 
representat ions for historical dates, etc. The teachers will never  have 

FIGURE 3 
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heard of such a thing and, if a child speaks of it, even the teacher  with 
her own number  form is unlikely to respond with recognition. {My 
experience is that it takes a series of carefully posed questions before 
one of these adults will respond, "Oh, yes; 3 is over there, a little farther 
back.") When  our child learns column sums, he may keep track of 
carries by setting his tongue to certain teeth, or use some other obscure 
device for temporary memory, and no one will ever know. Perhaps some 
ways are bet ter  than others. 

His geometric world is different f rom ours. He does not see clearly 
that triangles are rigid, and thus different f rom other polygons. He does 
not know that a 100-line approximation to a circle is indistinguishable 
from a circle unless it is quite large. He does not draw a cube in perspec- 
tive. He has only recently realized that squares become diamonds when  
put  on their points. The perceptual  distinction persists in adults. Thus 
in Figure 4 we see, as noted by Attneave [18], that the impression of 
square versus d iamond is affected by other  alignments in the scene, 
evidently by determining our choice of which axis of symmet ry  is to 
be used in the subjective description. 
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FIGURE 4 

Our child understands the topological idea of enclosure quite well. 
Why? This is a very  complicated concept in classical mathematics  but  
in terms of computat ional  processes it is perhaps not so difficult. But 
our child is almost sure to be muddled  about the situation in Figure 5 
(see Papert [19]): "When  the bus begins its trip around the lake, a boy 

FIGURE 5 
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is seated on the side away from the water. Will he be on the lake side 
at some time in the trip?" Difficulty with this is liable to persist through 
the child's eighth year, and perhaps relates to his difficulties with other 
abstract double reversals such as in subtracting negative numbers, or 
with apprehending other consequences of continuity-- 'Nt what point 
in the trip is there any sudden change?"--or with other bridges between 
logical and global. 

Our portrait is drawn in more detail in the literature on develop- 
mental psychology. But no one has yet built enough of a computational 
model of a child to see how these abilities and limitations link together 
in a structure compatible with land perhaps consequential to I other 
things he can do so effectively. Such work is beginning, however, and 
I expect the next decade to see substantial progress on such models. 

If we knew more about these matters, we might be able to help the 
child. At present we don't even have good diagnostics: his apparent 
ability to learn to give correct answers to formal questions may show 
only that he has developed some isolated library routines. If these 
cannot be called by his central problem-solving programs, because they 
use incompatible data structures or whatever, we may get a high rated 
test-passer who will never think very well. 

Before computation, the community of ideas about the nature of 
thought was too feeble to support an effective theory of learning and 
development. Neither the finite-state models of the Behaviorists, the 
hydraulic and economic analogies of the Freudians, nor the rabbit-in- 
the-hat insights of the Gestaltists supplied enough ingredients to under- 
stand so intricate a subject. It needs a substrate of already debugged 
theories and solutions of related but simpler problems. Now we have 
a flood of such ideas, well defined and implemented, for thinking about 
thinking; only a fraction are represented in traditional psychology: 

symbol table 
pure procedure 
time-sharing 
calling sequence 
functional argument 
memory protection 
dispatch table 
error message 
function-call trace 
breakpoint 
languages 
compiler 
indirect address 
macro 
property list 
data type 
hash coding 
microprogram 
format matching 

closed subroutines 
pushdown list 
interrupt 
communication cell 
common storage 
decision tree 
hardware-software trade-off 
serial-parallel trade-off 
time-memory trade-off 
conditional breakpoint 
asynchronous processor 
interpreter 
garbage collection 
list structure 
block structure 
look-ahead 
look-behind 
diagnostic program 
executive program 
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These are just a few ideas from general systems programming and 
debugging; we have said nothing about the many more specifically 
relevant concepts in languages or in artificial intelligence or in computer 
hardware or other advanced areas. All these serve today as tools 
of a curious and intricate craft, programming. But just as astronomy 
succeeded astrology, following Kepler's regularities, the discovery 
of principles in empirical explorations of intellectual process in 
machines should lead to a science. (In education we face still the same 
competition! The Boston Globe has an astrology page in its "comics" 
section. Help fight intellect pollution!) 

To return to our child, how can our computational ideas help him 
with his number concept? As a baby he learned to recognize certain 
special pair configurations such as two hands or two shoes. Much later 
he learned about some threes-- perhaps the long gap is because the 
environment doesn't have many fixed triplets: if he happens to find three 
pennies he will likely lose or gain one soon. Eventually he will find 
some procedure that manages five or six things, and he will be less at 
the mercy of finding and losing. But for more than six or seven things, 
he will remain at the mercy of forgetting; even if his verbal count is 
flawless, his enumeration procedure will have defects. He will skip some 
items and count others twice. We can help by proposing better procedures; 
putting things into a box is nearly foolproof, and so is crossing them 
off. But for fixed objects he will need some mental grouping procedure. 

First one should try to know what the child is doing; eye-motion 
study might help, asking him might be enough. He may be selecting the 
next item with some unreliable, nearly random method, with no good 
way to keep track of what has been counted. We might suggest: sliding 
a cursor; inventing easily remembered groups; drawing a coarse mesh. 

In each case the construction can be either real or imaginary. In using 
the mesh method one has to remember not to count twice objects that 
cross the mesh lines. The teacher should show that it is good to plan 
ahead, as in Figure 6, distorting the mesh to avoid the ambiguities! 
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FIGURE 6 

Mathematically the important concept is that "every proper counting 
procedure yields the same number." The child will understand that any 
algorithm is proper which (1) counts all the objects, (2) counts none of 
them twice. 
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Perhaps this procedural condition seems too simple; even an adult 
could understand it. In any case, it is not the concept of number adopted 
in what is today generally called the "New Math," and taught in our 
primary schools. The following polemic discusses this. 

3.2 

The "New Mathematics" 
By the "new math" I mean certain primary school attempts to 

imitate the formalistic outputs of professional mathematicians. 
Precipitously adopted by many schools in the wake of broad new 
concerns with early education, I think the approach is generally bad 
because of form-content displacements of several kinds. These cause 
problems for the teacher as well as for the child. 

Because of the formalistic approach the teacher will not be able to 
help the child very much with problems of formulation. For she will 
feel insecure herself as she drills him on such matters as the difference 
between the empty set and nothing, or the distinction between the 
"numeral" 3 + 5 and the numeral 8 which is the "common name" of 
the number eight, hoping that he will not ask what is the common name 
of the fraction 8/1, which is probably different from the rational 8/1 
and different from the quotient a/1 and different from the "indicated 
division" 8/1 and different from the ordered pair {8,1). She will be 
reticent about discussing parallel lines. For parallel lines do not usually 
meet, she knows, but they might (she has heard) if produced far enough, 
for did not something like that happen once in an experiment by some 
Russian mathematicians? But enough of the problems of the teacher: 
let us consider now three classes of objections from the child's stand- 
point. 

Developmenta l  Objections. It is very bad to insist that the child 
keep his knowledge in a simple ordered hierarchy. In order to retrieve 
what he needs, he must have a multiply connected network, so that 
he can try several ways to do each thing. He may not manage to match 
the first method to the needs of the problem. Emphasis on the "formal 
proof" is destructive at this stage, because the knowledge needed for 
finding proofs, and for understanding them, is far more complex (and 
less useful) than the knowledge mentioned in proofs. The network of 
knowledge one needs for understanding geometry is a web of examples 
and phenomena, and observations about the similarities and differences 
between them. One does not find evidence, in children, that such webs 
are ordered like the axioms and theorems of a logistic system, or that 
the child could use such a lattice if he had one. After one understands 
a phenomenon, it may be of great value to make a formal system for 
it, to make it easier to understand more advanced things. But even 
then, such a formal system is just one of many possible models; the 
New Math writers seem to confuse their axiom-theorem model with 

236 MARVIN MINSKY 



the number  system itself. In the case of the axioms for arithmetic, I 
will now argue, the formalism is often likely to do more harm than good 
for the understanding of more advanced things. 

Historically, the "set" approach used in New Math comes f rom a 
formalist a t tempt to derive the intuitive propert ies of the cont inuum 
from a nearly finite set theory. They part ly succeeded in this stunt tor 
"hack," as some programmers would put it), but in a manner  so complex 
that one cannot  talk seriously about  the real numbers  until well into 
high school, if one follows this model. The ideas of topology are deferred 
until much  later. But children in their sixth year already have well- 
developed geometric and topological ideas, only they have little ability 
to manipulate abstract symbols and definitions. We should build out 
from the child's strong points, instead of undermining him by 
attempting to replace what  he has by structures he cannot yet handle. 
But it is just like mathemat ic ians- -cer ta in ly  the world's  worst  
expos i tors - - to  think: "You can teach a child anything, if you just get 
the definitions precise enough," or "If we get all the definitions right 
the first time, we won' t  have any trouble later." We are not program- 
ming an empty  machine in FORTRAN: we are meddling with a poorly 
unders tood large system that, characteristically, uses multiply defined 
symbols in its normal  heuristic behavior. 

I ~) (~ I) 
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In tu i t i ve  Objec t ions .  New Math emphasizes the idea that a num- 
ber can be identified with an equivalence class of all sets that can be 
put into one-to-one correspondence with one another. Then the rational 
numbers  are defined as equivalence classes of pairs of integers, and 
a maze of formalism is in t roduced to prevent the child from identi~ing 
the rationals with the quotients or fractions. Functions are often treated 
as sets, although some texts present "function machines" with a super- 
ficially algorithm{c flavor. The definition of a "variable" is another  
fiendish maze of complication involving names, values, expressions, 
clauses, sentences, numerals,  "indicated operations," and so forth. 
(In fact, there are so many different kinds of data in real problem-solving 
that real-life mathematicians do not usually give them formal distinc- 
tions, but use the entire problem context to explain them.) In the course 
of pursuing this formalistic obsession, the curr iculum never  presents 
any coherent  picture of real mathematical  phenomena  of processes, 
discrete or continuous; of the algebra whose notational syntax concerns 
it so; or of geometry. The " theorems"  that are "proved" from time to 
time, such as, "A number  x has only one additive inverse, -x , "  are so 
mundane  and obvious that nei ther  teacher  nor student can make out 
the purpose of the proof. The "official" proof would add y to both sides 
of x + ( - y) = 0, apply the associative law, then the commutat ive  law, 
then the y = ( -  y) = 0 law, and finally the axioms of equality, to show 
that y must equal x. The child's mind can more easily unders tand 
deeper  ideas: "In x + ( - y )  = 0, if y were less than x there would be 
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some left over; while if x were less than y there would be a minus 
number left-- so they must be exactly equal:' The child is not permitted 
to use this kind of order-plus-continuity thinking, presumably because 
it uses "more advanced knowledge," hence isn't part of a "real proof." 
But in the network of ideas the child needs, this link has equal logical 
status and surely greater heuristic value. For another example, the 
student is made to distinguish clearly between the inverse of addition 
and the opposite sense of distance, a discrimination that seems entirely 
against the fusion of these notions that would seem desirable. 

Compu ta t i ona l  Objections. The idea of a procedure, and the 
know-how that comes from learning how to test, modify, and adapt 
procedures, can transfer to many of the child's other activities. Tradi- 
tional academic subjects such as algebra and arithmetic have relatively 
small developmental significance, especially when they are weak in in- 
tuitive geometry. (The question of which kinds of learning can 
"transfer" to other activities is a fundamental one in educational theory: 
I emphasize again our conjecture that the ideas of procedures and 
debugging will turn out to be unique in their transferability.) In algebra, 
as we have noted, the concept of "variable" is complicated; but in 
computation the child can easily see "x + y + z" as describing a pro- 
cedure (any procedure for adding!) with "x," "y," and "z" as pointing 
to its "data:' Functions are easy to grasp as procedures, hard if imagined 
as ordered pairs. If you want a graph, describe a machine that draws 
the graph; if you have a graph, describe a machine that can read it to 
find the values of the function. Both are easy and useful concepts. 

Let us not fall into a cultural trap; the set theory "foundation" for 
mathematics is popular today among mathematicians because it is the 
one they tackled and mastered lin college). These scientists simply are 
not acquainted, generally, with computation or with the Post-Turing- 
McCulloch-Pitts-McCarthy-Newell-Simon-... family of theories that 
will be so much more important when the children grow up. Set theory 
is not, as the logicians and publishers would have it, the only and true 
foundation of mathematics; it is a viewpoint that is pretty good for 
investigating the transfinite, but undistinguished for comprehending 
the real numbers, and quite substandard for learning about arithmetic, 
algebra, and geometry. 

To summarize my objections, the New Math emphasized the use 
of formalism and symbolic manipulation instead of the heuristic and 
intuitive content of the subject matter. The child is expected to learn 
how to solve problems but we do not teach him what we know, either 
about the subject or about problem-solving, a 

3In a shrewd but hilarious discussion of New Math textbooks, Feynman [20] explores 
the consequences of distinguishing between the thing and itself. "Color the picture of 
the ball red," a book says, instead of "Color the ball red." "Shall we color the entire square 
area in which the ball image appears or just the part inside the circle of the ball?" asks 
Fegnman. ITo "color the balls red" would presumably have to be "color the insides of 
the circles of all the members of the set of balls" or something like that. I 
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As an example  of h o w  the  p r e o c c u p a t i o n  wi th  f o r m  (in this case, 
the  ax ioms for ar i thmetic)  can w a r p  one ' s  v i ew of the  content ,  let us 
examine  the  we i rd  c o m p u l s i o n  to insist that  addi t ion  is u l t imate ly  an 
opera t ion  on just  two quantities.  In  N e w  Math,  a + b + c mus t  "really" 
be one of  ( a + ( b + c ) )  or ( ( a + b ) + c ) ,  and  a + b + c + d can be mean-  
ingful  on ly  after  several  appl icat ions  of  the associat ive law. N o w  this 
is silly in m a n y  contexts• The  child has a l ready  a good  intui t ive idea 
of  w h a t  it m e a n s  to pu t  several  sets together ;  it is just  as easy  to mix  
five colors of beads  as two. Thus  addi t ion is a l ready  an n-ary operation• 
But listen to the  b o o k  t ry ing to prove  that  this is not  so: 
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Addition is . . . always performed on two numbers. This may not seem 
reasonable at first sight, since you have often added long strings of figures. Try 
an experiment on yourself. Try to add the numbers 7, 8, 3 simultaneously. No 
matter how you attempt it, you are forced to choose two of the numbers, add 
them, and then add the third to their sum. 

--From a ninth-grade text 

Is the height  of a t ower  the resul t  of  add ing  its stages by  pairs in 
a cer ta in  order?  Is the length  or area of  an  object  p r o d u c e d  that  w a y  
f rom its parts? W h y  did they  in t roduce  their  sets and  their  one-one  
c o r r e s p o n d e n c e s  then  to miss the point?  Evidently,  t h e y  have talked 
themselves  into believing that  the axioms they  selected for algebra have 
some special  k ind  of truth!  

Let us cons ider  a few impor t an t  and  p re t ty  ideas tha t  are not  
d iscussed m u c h  in grade school.  First cons ider  the s u m  1/z + 1/4 + 1/8 + 
• • • . I n t e rp re t ed  as area, one  gets fascinat ing regroup ing  ideas, as in 
Figure 7. Once  the child k n o w s  h o w  to do division, he can  c o m p u t e  

FIGURE 7 

and  apprecia te  some  quant i ta t ive  aspects  of the l imiting process  .5, .75, 
.875, .9375, .96875, • • ', and  he can learn about  folding and  cut t ing  
and  ep idemics  and  popula t ions .  He could  learn  about  x = p x  + qx, 
w h e r e  p + q = 1, and  hence  apprec ia te  dilution; he can learn that  
3/4, 4/5, s/6, 6/7, 7/8, • • • -~ 1 and  begin to u n d e r s t a n d  the m a n y  colorful  
and  c o m m o n - s e n s e  geomet r ica l  and  topological  c o n s e q u e n c e s  of such  
matters• 

But in the N e w  Math,  the syntact ic  d is t inct ions  b e t w e e n  rationals, 
quotients ,  and  f ract ions  are  carr ied so far  tha t  to see w h i c h  of  3/8 and  
4/9 is larger, one  is not  pe rmi t t ed  to c o m p u t e  and  c o m p a r e  .375 wi th  
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.4444. One  m u s t  cross-multiply.  Now cross-mult ipl icat ion is very  cute, 
but it has two bugs: (1) no one can r e m e m b e r  which  way  the result ing 
condit ional should branch,  and (2) it doesn ' t  tell how far apart  the 
number s  are. The abstract  concept  of order is very  elegant (another set 
of axioms for the obvious) but  the children already unders tand  order  
pre t ty  well  and want  to know the amounts .  

Another  obsession is the concern for n u m b e r  base. It is good for the 
children to unders tand clearly that 223 is "two hundred"  plus " twenty"  
plus "three," and I think that  this should be made  as s imple as possible 
ra ther  than  complicated.4 I do not think that  the idea is so rich that 
one should drill young children to do ar i thmetic  in several  bases! For 
there is ve ry  little t ransfer  of this feeble concept  to other  things, and 
it risks a crippling insult to the fragile ar i thmetic  of pupils who, already 
t roubled with  6 + 7 = 13, now find that 6 + 7 = 15. Besides, for all 
the at tent ion to n u m b e r  base, I do not see in m y  children's  books any 
concern  with  even a few nontr ivial  imp l i ca t ions - - concep t s  that  might  
just i fy the attention, such as: 

Why is there only one way to write a decimal integer? 
Why does casting out nines work? (It isn't even mentioned.) 
What happens if we use arbitrary nonpowers, such as a + 37b + 24c + 1 ld +... 
instead of the usual a + 10b + 100c + 1000d +... ? 

If they don't  discuss such matters,  they must  have another  purpose.  
My  conjecture is that  the whole  fuss is to make  the kids bet ter  under-  
stand the procedures  for mult iplying and dividing. But f rom a develop- 
menta l  v iewpoin t  this m a y  be a serious m i s t a k e - - i n  the strategies 
of both  the old and the "new"  mathemat ica l  curricula.  At best, the 
s tandard algori thm for long division is cumbersome,  and most  children 
will never  use it to explore numer ic  phenomena .  And, a l though it is 
of some interest  to unders tand  how it works,  writ ing out the whole  
display suggests that the educator  believes that the child ought  to 
unders tand  the horrible thing every  time! This is wrong.  The impor-  
tant  idea, if any, is the repeated  subtraction;  the rest is just  a clever 
but  not vital p rog ramming  hack. 

If we can teach, pe rhaps  by rote, a practical  division algorithm, 
fine. But in any  case let us give t hem little calculators; if that  is too 
expensive, w h y  not slide rules. Please, wi thout  an impossible  explana- 
tion. The impor tan t  thing is to get on to the real numbers !  The New 
Math 's  concern with integers is so fanatical that it reminds  me, if I m a y  
mention another  pseudoscience, of numerology. (How about that, Boston 

Globe!) 

The Cauchy-Dedekind-Russell-Whitehead set-theory formal ism was 
a large a c c o m p l i s h m e n t - - a n o t h e r  (following Euclid) of a series of 
demons t ra t ions  that  m a n y  ma themat i ca l  ideas can be der ived f rom a 
few primitives,  albeit by a long and tor tuous  route. But the child 's  

4Cf. Tom Lehrer's song, "New Math" [21]. 
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problem is to acquire the ideas at all; he needs to learn about  reality. 
In terms of the concepts available to him, the entire formalism of set 
theory  cannot  hold a candle to one older, simpler, and possibly greater 
idea: the nonterminat ing decimal representat ion of the intuitive real 
number  line. 

There is a real conflict between the logician's goal and the educator's. 
The logician wants to minimize the variety of  ideas, and doesn't mind a long, 
thin path. The educator {rightly} wants to make the paths short and doesn't 
mind-- in  fact, prefers--connections to many other ideas. And  he cares 
almost not at all about the directions of the links. 

As for bet ter  understanding of the integers, countless exercises 
in making little children draw diagrams of one-one correspondences  
will not help, I think. It will help, no doubt, in their  learning valuable 
algorithms, not for number  but  for the important  topological and pro- 
cedural  problems in drawing paths wi thout  crossing, and so forth. It 
is just that sort of problem, now treated entirely accidentally, that we 
should at tend to. 

The computer  scientist thus has a responsibility to education. Not, 
as he thinks, because he will have to program the teaching machines. 
Certainly not because he is a skilled user of "finite mathematics." He 
knows how to debug  programs; he must  tell the educators how to help 
the children to debug their own problem-solving processes. He knows 
how procedures  depend on their  data structures; he can tell educators 
how to prepare children for new ideas. He knows why  it is bad to use 
double-purpose tricks that haunt  one later in debugging and enlarging 
programs. {Thus, one can capture the kids' interest by associating small 
numbers  with arbitrary colors. But what  will this trick do for their later 
at tempts to apply number  ideas to area, or to volume, or to value?) The 
computer  scientist is the one who must  s tudy such matters, because 
he is the proprietor  of the concept  of procedure,  the secret educators 
have so long been seeking. 
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Categories and Subject Descriptors: 
D.3.1 [Software]: Formal Definitions and Theory--syntax; D.3.4 
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F.4.1 [Theory of Computat ion]:  Mathematical Logic -- recursive function 
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