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I am honored and grateful to have been selected to join 
the ranks of ACM Turing Award winners. I probably 
have spent too much of my life thinking about com- 
puters, but I do not regret it a bit. I was fortunate to 
enter the field of computing in its infancy and partici- 
pate in its explosive growth. The rapid evolution of the 
underlying technologies in the past 30 years has not 
only provided an exciting environment, but has also 
presented a constant stream of intellectual challenges 
to those of us trying to harness this power and squeeze 
it to the last ounce. I hasten to say, especially to the 
younger members of the audience, there is no end in 
sight. As a matter of fact, I believe the next thirty years 
will be even more exciting and rich with challenges. 

The three principal contributors to performance in 
scientific processors are the algorithm, the compiler, 
and the machine organization. When possible, the si- 
multaneous optimization of these three factors holds 
the key to the highest possible performance. Of the 
three contributors, algorithm improvements are the 
most important. An idea that changes an algorithm 
from N**2 to N* log N operations, where N is propor- 
tionate to the number of input elements, is consider- 
ably more spectacular than an improvement in ma- 
chine organization, where only a constant factor of 
run-time is achieved. Unfortunately, really exploiting 
the characteristics of a particular algorithm in the un- 
derlying machine organization often results in a spe- 
cialized computer that will not perform well on most 
other algorithms. Signal processors are an example of 
this. They handle information transforms very fast, 
even in one clock cycle, but can be extremely ineffi- 
cient in computing anything else. 

My interests have been in achieving high perform- 
ance for a broad range of scientific calculations. There- 
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fore, I have focused mainly on optimizations involving 
the compiler and the underlying machine architecture. 
It is very probable that in the future, the highest possi- 
ble performance improvements must also include the 
more difficult problem of algorithm modification. This 
is because parallelism will be essential, and the per- 
formance of parallel machines depends heavily on the 
algorithm used and how well it matches the parallel 
architecture. 

In the last 25 years we have seen a 100-fold increase 
in uniprocessor computer performance. We have also 
seen a lO,000-fold decrease in cost. In the next 25 years, 
we are likely to see similar cost improvements. How- 
ever, because subnanosecond cycles will be difficult, 
the performance of our largest machines will be on the 
order of a few billion instructions per second. We 
should always look at the absolute performance of uni- 
processors, because if we can partition the problem, 
multiple processors may be used to gain even higher 
performance. We have seen this concept in trivial use 
for years, for example in job entry scheduling pro- 
grams. Therefore, a key unresolved question is to un- 
derstand how to partition a given problem at a global 
level and then operate on its separate parts using paral- 
lel machines. Global partitioning is a very difficult 
problem. Today there are many ideas, some good at 
specialized tasks, yet there is nothing promising for a 
uniform approach. 

Today's compiler technology is quite sophisticated. 
Those who build machine architectures and organiza- 
tions should design them so the known compiler opti- 
mization techniques are easily applied. New compiler 
concepts will be needed to exploit the capabilities of 
the new machines. I also believe that additional im- 
provements are needed and are possible for existing 
optimizations. Better register allocation is one example. 

The construction of a special purpose processor of 
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very high performance is not difficult compared to a 
general purpose processor. By "special purpose," I mean 
concepts such as floating point units, caches, and vector 
processors. A machine built  with a cache and a vector 
unit is specialized toward problems that have a good 
cache-hit  ratio and are amenable to vectorization. It 
will have poor cost /performance on other problems. 
With relatively little progress on the parti t ioning prob- 
lem and an apparent  limit on the speed of a uniproces- 
sor, we may find tomorrow's high performance world 
not much different than today's. Indeed, there will be a 
large class of problems that cannot be part i t ioned prac- 
tically and thus, will be l imited to uniprocessor per- 
formance. 

I would like to describe to you the three most inter- 
esting projects that I have participated in. They were 
interesting because I felt I learned faster during these 
projects than at other times. 

When I joined IBM in 1956, the Stretch project was 
underway. The project was led by Steve Dunwell, who 
placed performance, not cost, as paramount.  My experi- 
ence had consisted of writing one Monte Carlo simula- 
tion where the machine language was HEX. I am 
shocked that I did not write an assembler before pro- 
ceeding, but the problem was so interesting that such a 
thing never occurred to me. 

Designed for Los Alamos, Stretch's ambitious goal 
was to be 100 times faster than the existing 704 while 
providing great flexibility in addressing, floating-point 
arithmetic, and nonnumeric  operations. Any bit in the 
machine could be addressed directly, any word could 
be monitored, variable length data could be referenced, 
and floating point numbers came in many varieties. It 
was a programmer's  d ream--espec ia l ly  assembly lan- 
guage level p rogrammers - -and  it was a wonderful  chal- 
lenge for those of us designing the hardware.  

To overlap memory access, we introduced instruction 
execution look ahead (pipelining). Error Correcting 
Code (ECC}, was applied to main memory and disk and 
tape I /O,  and we worked with the compiler people to 
develop efficient instruction sequencing and register al- 
location. 

Fortran I for the 704 generated excellent  code, even 
measured by today's criteria. Those interested in com- 
pilers learned a great deal from Fortran's  usage with 
Stretch. For example, much of the richness of the 
Stretch architecture was not exploited by the compiler. 
As I recall, John Backus told us in advance that this 
would be the case. We architects would have benefited 
had we known more about the Fortran compiler at the 
time. Because of this and many other experiences, 
however, we have learned that it is easier to write 
compilers that capitalize on a simpler instruction set. 
Although Stretch met less than half of its performance 
goal when it was shipped to Los Alamos in 1961, we 
had invented and tried many techniques still used 
today. 

Next, I would like to tell you a little bit about the 
Advanced Computer System (ACS). This was a project 
we undertook between 1964 and 1968. It had a simple 

yet irresistible goal: to design and build the fastest sci- 
entific computer  feasible. Under the late Jack Bertram's 
leadership, we designed a computer  with many organi- 
zational features that even today are not well known. 

For various reasons, however,  ACS was not built. It 
would have had a ten nanosecond cycle time, on the 
order of today's mult imil l ion dollar computers, so it 
would have been very fast hardware.  This is only 
where machine organization begins. At each cycle we 
dispatched seven operations, one to the branch unit, 
three to the fixed point unit, and three to the floating 
point unit. The fixed point unit  could initiate three 
instructions on each cycle. The floating point unit  had 
a buffer of eight operands and logic to pick the first 
three out of the eight that were ready. We had two 
paths to cache allowing two memory accesses per cycle, 
and to match the cache access time to the CPU cycle, it 
was pipelined five deep (necessary because of the low 
level of circuit integration). A neat  invention was a 
FIFO store queue that allowed computat ion to proceed 
without wait ing for a store-through and a hardware 
interlock to protect the cases when a reference is made 
to the operand. It also resolved interfering load instruc- 
tions. 

Much of our effort went  into dealing with branch 
instructions in ways that minimized draining the pipe- 
line. We divided each branching instruction into its 
three essential operations: determinat ion of condition, 
calculation of branch target address, and the actual 
jump instruction. There was also a branch history 
table that allowed instruction prefetching based on the 
dynamics of recent branch instruction executions. An- 
other specialized form of branch was called "skip;" it 
allowed compiler scheduling across branches. Given all 
of these hardware assists, the experimental  compiler 
generated good code and scheduled instructions to min- 
imize the pipeline effects. 

Long before we had a firm hardware design, we had 
an experimental  optimizing compiler to evaluate var- 
iants on the design. Working with a combined team of 
compiler and hardware people, I learned the impor- 
tance of not including hardware features that the com- 
piler could not use and including hardware facilities to 
allow efficient compilation. This experimental  compiler 
was the source for much of our subsequent work on 
optimization algorithms. Many of the code optimization 
methods used in compilers today came from this work. 
These include interval-based control flow analysis, data 
flow analysis, common subexpression elimination, code 
motion, strength reduction, and code scheduling. On 
occasion, the compiler was able to generate better code 
for ACS than the best hand coders. We learned of the 
importance of an efficient compiler and its surrounding 
software support tools. 

The parts of ACS that were built  20 years ago are 
still impressive, except for the speed-power product: 
internal circuits were 250 picoseconds, each circuit 
dissipated about 30 milliwatts, and there were up to 40 
circuits per chip. Had the complete machine been built, 
I believe that the cycle time would have been in the 
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low teens of nanoseconds. It would have accomplished 
four to five instructions per cycle on linear algebra-  
type problems. But, because of cache latency and the 
inabil i ty to almost always anticipate the correct branch 
flow, we would not have achieved near that rate on 
more general purpose problems. 

lowest cost computer  that would meet  these require- 
ments. We designed a machine that subsequently be- 
came known as the 801 Computer. Eventually, we 
abandoned the idea of a telephone exchange, and con- 
cluded that we had pretty powerful ideas in computer  
design. We complemented these ideas with a high level 

Another important part of the 801 project was the tight coupling and simultaneous 
development of the hardware and the compiler. 

These are only a few of the features we had in ACS. 
Many ideas have found their  way into subsequent ma- 
chines at IBM, part icular ly in the cache area. Some of 
the more intricate ones, however, have not yet been 
used. In many cases this was due to cost versus per- 
formance trade-offs, but  I am confident that declining 
costs will enable use of these ideas. 

ACS never made it out of the laboratory; I suppose it 
was too big and too expensive, but for me it was prob- 
ably the most exciting project I have ever been in- 
volved in. In reflecting on this, I believe that what  
made it par t icular ly exciting was that we were a small 
team, mostly hand-picked by Jack Bertram, and we pi- 
oneered every aspect of the project. 

I spoke about the architecture and the compiler, but 
some of our most clever inventions had to do with 
testing instruments and techniques, fast disks, packag- 
ing, and cooling. I received a great deal of satisfaction 
in watching our engineers tackle and solve these prob- 
lems. Another  principal  factor was the quality of the 
team. Many are names I am sure you will recognize- -  
among them Fran Allen, Dick Arnold, Fred Buelow, 
Phil Dauber, John Earle, Charlie Freiman, Russ Robe- 
len, Herb Schorr, and Ed Sussenguth. My only regret 
about ACS is that unl ike compiler ideas, we did not 
take the time to publish our ideas on hardware so oth- 
ers could bui ld on them. 

Let me now move on to discuss another interesting 
project I was involved i n - - t h e  801 computer. Around 
1974, we were investigating the possibility of building 
an all digital telephone exchange capable of handling 
approximately one mill ion calls per hour. At approxi- 
mately 20,000 instructions per call setup, we calculated 
that we needed a processor capable of executing 6 mil- 
lion instructions per second (MIPS). But since we did 
not know that much about telephones, we felt that we 
should probably aim for a 12 MIPS processor. Certainly, 
a general purpose machine was not the best choice for 
this task. For example,  we had stringent real-t ime re- 
sponse requirements.  So in a sense, we were looking at 
a special purpose machine.  From the beginning, we also 
assumed that we would program in a high-level lan- 
guage. In this case it was not absolute performance that 
motivated us. We had a performance target. We knew 
the general nature of the applications; we had no heavy 
floating point calculations, and we were looking for the 

language and a compiler, PL.8, and pursued their  devel- 
opment for the next several years. 

Among the principal features of the 801 were sepa- 
rate instruction and data caches, providing much 
higher bandwidth  between the memory and CPU, and 
no ari thmetic operations to storage, thereby greatly 
simplifying pipelining. Another  important  part of the 
801 project was the tight coupling and simultaneous 
development  of the hardware  and the compiler. This 
tight coupling allowed the construction of an effective 
compiler and provided a simple machine organization. 

This project was a great team effort, and my col- 
leagues Marc Auslander,  Greg Chaitin, A1 Chang, Marty 
Hopkins, Peter Markstein, and George Radin, to name 
just a few, were not only great contributors, but made 
the whole venture enjoyable. Another  satisfying aspect 
of the 801 project was that many of our ideas were 
considered sufficiently interesting by others and stimu- 
lated considerable addit ional research and experimen-  
tation in many universities. Berkeley coined the name 
"RISC" (Reduced Instruction Set Computing) for similar 
work. 

Within IBM we feel it is ext remely  important  to sim- 
ulate the hardware of a new machine extensively. As 
the complexi ty of machines increased, the time re- 
quired to simulate them was becoming too long. In 1980 
we started to develop a special purpose machine for 
this task. Rick Maim developed an early prototype and 
Monty Denneau designed, built, and debugged a very 
large system. Its goal was to provide a hardware  assist 
to the logic design simulation, increasing the speed of 
simulation 100-fold to lO00-fold, depending on the 
number  of circuits to be simulated. Logic simulation 
appears to be an ideal problem for parallel  machines 
because it should s imply emulate  the way a computer  
really works. The machine has 256 parallel  logic units 
accessing a shared memory.  A special compiler  takes a 
reasonably high-level logic description, generates the 
necessary instructions, and loads them into the ma- 
chine. Each unit  simulates about 4000 circuits sequen- 
tially and at the end of each cycle, broadcasts its results 
through a nonblocking switch to each of its 255 part- 
ners. Thus, 256 circuits per cycle are simulated. 

Assigning logic blocks to a machine is analogous to 
assigning circuits to chips, and according to Rent 's Law, 
4000 I /Os  for 4000 circuits should be more than 
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enough. In spite of this, the compiler parti t ioning prob- 
lem takes a very long time on a large mainframe CPU. 
This forces us to use the machines only for long- 
running simulations. In spite of this t ime-consuming 
difficulty, many such machines are in constant use at 
IBM. The next generation logic simulator, with added 
switching capacity, is being built  to ease this problem. 

Note, however, that the nonblocking switches grow 
at least as fast as N* log N, whereas the machine hard- 
ware grows linearly. Thus, in the limit, it will be all- 
switch. I have ment ioned this example because it dem- 
onstrates a paradox simply: A priori, it seems very nat- 
ural and simple to map a logic simulator onto multiple 
machines, but a simplistic straightforward extension 
will encounter  difficulties. 

cessors. For example,  on an inner loop that goes at 
three instructions per cycle on a machine that has a 
cache taking 10 cycles per miss, a 3 percent  miss ratio 
will halve performance. 

Thus, machines such as this can be considered spe- 
cialized in the sense that problems with good cache hit 
ratios achieve high performance. I see many techniques 
where tricky programming can vastly improve the 
cache hit ratio. I believe that people interested in com- 
pilers should try to make these tricky techniques auto- 
matic, as vectorization has been made automatic by 
compilers. 

I mentioned earlier that improved algorithms can 
provide the most leverage, orders of magnitude in the 
dimension of the problem, whereas parallelism will at 

It is this trend that emphasizes cost over performance that leads me to believe the search 
for future scientific computing performance has to concentrate on gross parallelism. 

This brings me to the future. By exploiting improve- 
ments in circuit and memory density (e.g., one million 
transistor chips and four megabit chips), it is possible 
with just a few CMOS chips to bui ld a powerful scien- 
tific machine that will match the performance of vector 
based computers on many important  problems. This 
machine will have a very fast floating point mu l t i p ly /  
add unit  equipped with buffers on a single chip. It also 
will be capable of s imultaneously executing a fixed 
point, a floating point, and a branch instruction. As has 
been stated several times, optimizing compilers will be 
essential to exploit such machines. 

Memory is inexpensive and cost improvements will 
continue. Thus, we can expect large random-access 
memories consisting of hundreds of gigabytes. Disks 
will maintain the backup database, but by paging, the 
database applications will execute out of main memory 
at speeds substantially faster than they do today. The 
significance of this is that the enormous amount  of ef- 
fort that has gone into developing schemes to achieve 
high performance on mechanical  devices will no longer 
be necessary. 

As I said before, I expect the thir ty-year-old trend of 
100-fold computer performance improvement  with 
10,000-fold cost improvement  to continue. It is this 
trend, that emphasizes cost over performance, that 
leads me to believe the search for future scientific com- 
puting performance has to concentrate on gross paral- 
lelism. It is necessary due to increasing difficulties in 
reducing cycle time and cycles per instruction. Due to 
the continuing steep decrease in costs, it will be possi- 
ble to aggregate many CPUs executing mult iple instruc- 
tion streams concurrently.  Thus, one of the principal 
challenges will lie in compiler optimization techniques, 
both to recognize the parallelism and schedule the in- 
structions. One part icularly difficult yet crucial prob- 
lem is to minimize cache misses in these parallel  pro- 

most provide a speedup l inear to the number  of proces- 
sors. New algorithms tailored to such parallel  machines 
that exploit the clever details of their architecture and 
interconnection will be essential, and conversely, spe- 
cialized machines oriented towards such parallel  algo- 
rithms will be possible and economically warranted.  

Many years ago, John McCarthy remarked to me that 
if it had not been for Alan Turing and his idea of a 
Universal Machine, we would still be arguing about the 
capabilities of different machine designs. Fortunately,  
this is not an issue, however,  we do seem to carry on at 
length about cost /performance of various machine de- 
signs. The arguments are further complicated since 
each machine can demonstrate a set of problems and 
algorithms for which it is specialized and does particu- 
larly well. I am certain this will be worse for parallel  
machines where  the degree of specialization can be 
higher. Comparison of various machine architectures is 
not done well today, perhaps because of its intrinsic 
difficulty or perhaps because of commercial  implica- 
tions. I hope this can be done more carefully in the 
future; maybe we could look to academia for help. 

I would like to conclude by reiterating that the past 
thir ty years have emphasized cost improvement  over 
performance. I see no reason why this t rend should not 
continue. As we look ahead, we see ourselves ap- 
proaching a limit on the performance of a uniprocessor 
and therefore, we observe many working on mult iple 
machine aggregates. As it is not obvious that this will 
solve the high performance scientific computing prob- 
lem, we should not infer that the future is simply an 
extrapolation of today's ideas. I do not find it discourag- 
ing that there seems to be no clear-cut route to high 
performance. I feel the flexibility of computers will al- 
low us to solve problems in ways not yet envisioned, 
and will make the future of computing more interesting 
than the past. 
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