
TURING LECTURE

THE SEARCH FOR PERFORMANCE
IN SCIENTIFIC PROCESSORS

JOHN COCKE

I am honored and grateful to have been selected to join
the ranks of ACM Turing Award winners. I probably
have spent too much of my life thinking about com-
puters, but I do not regret it a bit. I was fortunate to
enter the field of computing in its infancy and partici-
pate in its explosive growth. The rapid evolution of the
underlying technologies in the past 30 years has not
only provided an exciting environment, but has also
presented a constant stream of intellectual challenges
to those of us trying to harness this power and squeeze
it to the last ounce. I hasten to say, especially to the
younger members of the audience, there is no end in
sight. As a matter of fact, I believe the next thirty years
will be even more exciting and rich with challenges.

The three principal contributors to performance in
scientific processors are the algorithm, the compiler,
and the machine organization. When possible, the si-
multaneous optimization of these three factors holds
the key to the highest possible performance. Of the
three contributors, algorithm improvements are the
most important. An idea that changes an algorithm
from N**2 to N* log N operations, where N is propor-
tionate to the number of input elements, is consider-
ably more spectacular than an improvement in ma-
chine organization, where only a constant factor of
run-time is achieved. Unfortunately, really exploiting
the characteristics of a particular algorithm in the un-
derlying machine organization often results in a spe-
cialized computer that will not perform well on most
other algorithms. Signal processors are an example of
this. They handle information transforms very fast,
even in one clock cycle, but can be extremely ineffi-
cient in computing anything else.

My interests have been in achieving high perform-
ance for a broad range of scientific calculations. There-

©1988ACM0001-0782/88/0300-0250 $1.50

fore, I have focused mainly on optimizations involving
the compiler and the underlying machine architecture.
It is very probable that in the future, the highest possi-
ble performance improvements must also include the
more difficult problem of algorithm modification. This
is because parallelism will be essential, and the per-
formance of parallel machines depends heavily on the
algorithm used and how well it matches the parallel
architecture.

In the last 25 years we have seen a 100-fold increase
in uniprocessor computer performance. We have also
seen a lO,000-fold decrease in cost. In the next 25 years,
we are likely to see similar cost improvements. How-
ever, because subnanosecond cycles will be difficult,
the performance of our largest machines will be on the
order of a few billion instructions per second. We
should always look at the absolute performance of uni-
processors, because if we can partition the problem,
multiple processors may be used to gain even higher
performance. We have seen this concept in trivial use
for years, for example in job entry scheduling pro-
grams. Therefore, a key unresolved question is to un-
derstand how to partition a given problem at a global
level and then operate on its separate parts using paral-
lel machines. Global partitioning is a very difficult
problem. Today there are many ideas, some good at
specialized tasks, yet there is nothing promising for a
uniform approach.

Today's compiler technology is quite sophisticated.
Those who build machine architectures and organiza-
tions should design them so the known compiler opti-
mization techniques are easily applied. New compiler
concepts will be needed to exploit the capabilities of
the new machines. I also believe that additional im-
provements are needed and are possible for existing
optimizations. Better register allocation is one example.

The construction of a special purpose processor of

250 Communications of the ACM March 1988 Volume 31 Number 3

Turing Lecture

very high performance is not difficult compared to a
general purpose processor. By "special purpose," I mean
concepts such as floating point units, caches, and vector
processors. A machine built with a cache and a vector
unit is specialized toward problems that have a good
cache-hit ratio and are amenable to vectorization. It
will have poor cost /performance on other problems.
With relatively little progress on the parti t ioning prob-
lem and an apparent limit on the speed of a uniproces-
sor, we may find tomorrow's high performance world
not much different than today's. Indeed, there will be a
large class of problems that cannot be part i t ioned prac-
tically and thus, will be l imited to uniprocessor per-
formance.

I would like to describe to you the three most inter-
esting projects that I have participated in. They were
interesting because I felt I learned faster during these
projects than at other times.

When I joined IBM in 1956, the Stretch project was
underway. The project was led by Steve Dunwell, who
placed performance, not cost, as paramount. My experi-
ence had consisted of writing one Monte Carlo simula-
tion where the machine language was HEX. I am
shocked that I did not write an assembler before pro-
ceeding, but the problem was so interesting that such a
thing never occurred to me.

Designed for Los Alamos, Stretch's ambitious goal
was to be 100 times faster than the existing 704 while
providing great flexibility in addressing, floating-point
arithmetic, and nonnumeric operations. Any bit in the
machine could be addressed directly, any word could
be monitored, variable length data could be referenced,
and floating point numbers came in many varieties. It
was a programmer's d ream--espec ia l ly assembly lan-
guage level p rogrammers - -and it was a wonderful chal-
lenge for those of us designing the hardware.

To overlap memory access, we introduced instruction
execution look ahead (pipelining). Error Correcting
Code (ECC}, was applied to main memory and disk and
tape I /O, and we worked with the compiler people to
develop efficient instruction sequencing and register al-
location.

Fortran I for the 704 generated excellent code, even
measured by today's criteria. Those interested in com-
pilers learned a great deal from Fortran's usage with
Stretch. For example, much of the richness of the
Stretch architecture was not exploited by the compiler.
As I recall, John Backus told us in advance that this
would be the case. We architects would have benefited
had we known more about the Fortran compiler at the
time. Because of this and many other experiences,
however, we have learned that it is easier to write
compilers that capitalize on a simpler instruction set.
Although Stretch met less than half of its performance
goal when it was shipped to Los Alamos in 1961, we
had invented and tried many techniques still used
today.

Next, I would like to tell you a little bit about the
Advanced Computer System (ACS). This was a project
we undertook between 1964 and 1968. It had a simple

yet irresistible goal: to design and build the fastest sci-
entific computer feasible. Under the late Jack Bertram's
leadership, we designed a computer with many organi-
zational features that even today are not well known.

For various reasons, however, ACS was not built. It
would have had a ten nanosecond cycle time, on the
order of today's mult imil l ion dollar computers, so it
would have been very fast hardware. This is only
where machine organization begins. At each cycle we
dispatched seven operations, one to the branch unit,
three to the fixed point unit, and three to the floating
point unit. The fixed point unit could initiate three
instructions on each cycle. The floating point unit had
a buffer of eight operands and logic to pick the first
three out of the eight that were ready. We had two
paths to cache allowing two memory accesses per cycle,
and to match the cache access time to the CPU cycle, it
was pipelined five deep (necessary because of the low
level of circuit integration). A neat invention was a
FIFO store queue that allowed computat ion to proceed
without wait ing for a store-through and a hardware
interlock to protect the cases when a reference is made
to the operand. It also resolved interfering load instruc-
tions.

Much of our effort went into dealing with branch
instructions in ways that minimized draining the pipe-
line. We divided each branching instruction into its
three essential operations: determinat ion of condition,
calculation of branch target address, and the actual
jump instruction. There was also a branch history
table that allowed instruction prefetching based on the
dynamics of recent branch instruction executions. An-
other specialized form of branch was called "skip;" it
allowed compiler scheduling across branches. Given all
of these hardware assists, the experimental compiler
generated good code and scheduled instructions to min-
imize the pipeline effects.

Long before we had a firm hardware design, we had
an experimental optimizing compiler to evaluate var-
iants on the design. Working with a combined team of
compiler and hardware people, I learned the impor-
tance of not including hardware features that the com-
piler could not use and including hardware facilities to
allow efficient compilation. This experimental compiler
was the source for much of our subsequent work on
optimization algorithms. Many of the code optimization
methods used in compilers today came from this work.
These include interval-based control flow analysis, data
flow analysis, common subexpression elimination, code
motion, strength reduction, and code scheduling. On
occasion, the compiler was able to generate better code
for ACS than the best hand coders. We learned of the
importance of an efficient compiler and its surrounding
software support tools.

The parts of ACS that were built 20 years ago are
still impressive, except for the speed-power product:
internal circuits were 250 picoseconds, each circuit
dissipated about 30 milliwatts, and there were up to 40
circuits per chip. Had the complete machine been built,
I believe that the cycle time would have been in the

March 1988 Volume 31 Number 3 Communications of the ACM 251

Turing Lecture

low teens of nanoseconds. It would have accomplished
four to five instructions per cycle on linear algebra-
type problems. But, because of cache latency and the
inabil i ty to almost always anticipate the correct branch
flow, we would not have achieved near that rate on
more general purpose problems.

lowest cost computer that would meet these require-
ments. We designed a machine that subsequently be-
came known as the 801 Computer. Eventually, we
abandoned the idea of a telephone exchange, and con-
cluded that we had pretty powerful ideas in computer
design. We complemented these ideas with a high level

Another important part of the 801 project was the tight coupling and simultaneous
development of the hardware and the compiler.

These are only a few of the features we had in ACS.
Many ideas have found their way into subsequent ma-
chines at IBM, part icular ly in the cache area. Some of
the more intricate ones, however, have not yet been
used. In many cases this was due to cost versus per-
formance trade-offs, but I am confident that declining
costs will enable use of these ideas.

ACS never made it out of the laboratory; I suppose it
was too big and too expensive, but for me it was prob-
ably the most exciting project I have ever been in-
volved in. In reflecting on this, I believe that what
made it par t icular ly exciting was that we were a small
team, mostly hand-picked by Jack Bertram, and we pi-
oneered every aspect of the project.

I spoke about the architecture and the compiler, but
some of our most clever inventions had to do with
testing instruments and techniques, fast disks, packag-
ing, and cooling. I received a great deal of satisfaction
in watching our engineers tackle and solve these prob-
lems. Another principal factor was the quality of the
team. Many are names I am sure you will recognize- -
among them Fran Allen, Dick Arnold, Fred Buelow,
Phil Dauber, John Earle, Charlie Freiman, Russ Robe-
len, Herb Schorr, and Ed Sussenguth. My only regret
about ACS is that unl ike compiler ideas, we did not
take the time to publish our ideas on hardware so oth-
ers could bui ld on them.

Let me now move on to discuss another interesting
project I was involved i n - - t h e 801 computer. Around
1974, we were investigating the possibility of building
an all digital telephone exchange capable of handling
approximately one mill ion calls per hour. At approxi-
mately 20,000 instructions per call setup, we calculated
that we needed a processor capable of executing 6 mil-
lion instructions per second (MIPS). But since we did
not know that much about telephones, we felt that we
should probably aim for a 12 MIPS processor. Certainly,
a general purpose machine was not the best choice for
this task. For example, we had stringent real-t ime re-
sponse requirements. So in a sense, we were looking at
a special purpose machine. From the beginning, we also
assumed that we would program in a high-level lan-
guage. In this case it was not absolute performance that
motivated us. We had a performance target. We knew
the general nature of the applications; we had no heavy
floating point calculations, and we were looking for the

language and a compiler, PL.8, and pursued their devel-
opment for the next several years.

Among the principal features of the 801 were sepa-
rate instruction and data caches, providing much
higher bandwidth between the memory and CPU, and
no ari thmetic operations to storage, thereby greatly
simplifying pipelining. Another important part of the
801 project was the tight coupling and simultaneous
development of the hardware and the compiler. This
tight coupling allowed the construction of an effective
compiler and provided a simple machine organization.

This project was a great team effort, and my col-
leagues Marc Auslander, Greg Chaitin, A1 Chang, Marty
Hopkins, Peter Markstein, and George Radin, to name
just a few, were not only great contributors, but made
the whole venture enjoyable. Another satisfying aspect
of the 801 project was that many of our ideas were
considered sufficiently interesting by others and stimu-
lated considerable addit ional research and experimen-
tation in many universities. Berkeley coined the name
"RISC" (Reduced Instruction Set Computing) for similar
work.

Within IBM we feel it is ext remely important to sim-
ulate the hardware of a new machine extensively. As
the complexi ty of machines increased, the time re-
quired to simulate them was becoming too long. In 1980
we started to develop a special purpose machine for
this task. Rick Maim developed an early prototype and
Monty Denneau designed, built, and debugged a very
large system. Its goal was to provide a hardware assist
to the logic design simulation, increasing the speed of
simulation 100-fold to lO00-fold, depending on the
number of circuits to be simulated. Logic simulation
appears to be an ideal problem for parallel machines
because it should s imply emulate the way a computer
really works. The machine has 256 parallel logic units
accessing a shared memory. A special compiler takes a
reasonably high-level logic description, generates the
necessary instructions, and loads them into the ma-
chine. Each unit simulates about 4000 circuits sequen-
tially and at the end of each cycle, broadcasts its results
through a nonblocking switch to each of its 255 part-
ners. Thus, 256 circuits per cycle are simulated.

Assigning logic blocks to a machine is analogous to
assigning circuits to chips, and according to Rent 's Law,
4000 I /Os for 4000 circuits should be more than

252 Communications of the ACM March 1988 Volume 31 Number 3

Turing Lecture

enough. In spite of this, the compiler parti t ioning prob-
lem takes a very long time on a large mainframe CPU.
This forces us to use the machines only for long-
running simulations. In spite of this t ime-consuming
difficulty, many such machines are in constant use at
IBM. The next generation logic simulator, with added
switching capacity, is being built to ease this problem.

Note, however, that the nonblocking switches grow
at least as fast as N* log N, whereas the machine hard-
ware grows linearly. Thus, in the limit, it will be all-
switch. I have ment ioned this example because it dem-
onstrates a paradox simply: A priori, it seems very nat-
ural and simple to map a logic simulator onto multiple
machines, but a simplistic straightforward extension
will encounter difficulties.

cessors. For example, on an inner loop that goes at
three instructions per cycle on a machine that has a
cache taking 10 cycles per miss, a 3 percent miss ratio
will halve performance.

Thus, machines such as this can be considered spe-
cialized in the sense that problems with good cache hit
ratios achieve high performance. I see many techniques
where tricky programming can vastly improve the
cache hit ratio. I believe that people interested in com-
pilers should try to make these tricky techniques auto-
matic, as vectorization has been made automatic by
compilers.

I mentioned earlier that improved algorithms can
provide the most leverage, orders of magnitude in the
dimension of the problem, whereas parallelism will at

It is this trend that emphasizes cost over performance that leads me to believe the search
for future scientific computing performance has to concentrate on gross parallelism.

This brings me to the future. By exploiting improve-
ments in circuit and memory density (e.g., one million
transistor chips and four megabit chips), it is possible
with just a few CMOS chips to bui ld a powerful scien-
tific machine that will match the performance of vector
based computers on many important problems. This
machine will have a very fast floating point mu l t i p ly /
add unit equipped with buffers on a single chip. It also
will be capable of s imultaneously executing a fixed
point, a floating point, and a branch instruction. As has
been stated several times, optimizing compilers will be
essential to exploit such machines.

Memory is inexpensive and cost improvements will
continue. Thus, we can expect large random-access
memories consisting of hundreds of gigabytes. Disks
will maintain the backup database, but by paging, the
database applications will execute out of main memory
at speeds substantially faster than they do today. The
significance of this is that the enormous amount of ef-
fort that has gone into developing schemes to achieve
high performance on mechanical devices will no longer
be necessary.

As I said before, I expect the thir ty-year-old trend of
100-fold computer performance improvement with
10,000-fold cost improvement to continue. It is this
trend, that emphasizes cost over performance, that
leads me to believe the search for future scientific com-
puting performance has to concentrate on gross paral-
lelism. It is necessary due to increasing difficulties in
reducing cycle time and cycles per instruction. Due to
the continuing steep decrease in costs, it will be possi-
ble to aggregate many CPUs executing mult iple instruc-
tion streams concurrently. Thus, one of the principal
challenges will lie in compiler optimization techniques,
both to recognize the parallelism and schedule the in-
structions. One part icularly difficult yet crucial prob-
lem is to minimize cache misses in these parallel pro-

most provide a speedup l inear to the number of proces-
sors. New algorithms tailored to such parallel machines
that exploit the clever details of their architecture and
interconnection will be essential, and conversely, spe-
cialized machines oriented towards such parallel algo-
rithms will be possible and economically warranted.

Many years ago, John McCarthy remarked to me that
if it had not been for Alan Turing and his idea of a
Universal Machine, we would still be arguing about the
capabilities of different machine designs. Fortunately,
this is not an issue, however, we do seem to carry on at
length about cost /performance of various machine de-
signs. The arguments are further complicated since
each machine can demonstrate a set of problems and
algorithms for which it is specialized and does particu-
larly well. I am certain this will be worse for parallel
machines where the degree of specialization can be
higher. Comparison of various machine architectures is
not done well today, perhaps because of its intrinsic
difficulty or perhaps because of commercial implica-
tions. I hope this can be done more carefully in the
future; maybe we could look to academia for help.

I would like to conclude by reiterating that the past
thir ty years have emphasized cost improvement over
performance. I see no reason why this t rend should not
continue. As we look ahead, we see ourselves ap-
proaching a limit on the performance of a uniprocessor
and therefore, we observe many working on mult iple
machine aggregates. As it is not obvious that this will
solve the high performance scientific computing prob-
lem, we should not infer that the future is simply an
extrapolation of today's ideas. I do not find it discourag-
ing that there seems to be no clear-cut route to high
performance. I feel the flexibility of computers will al-
low us to solve problems in ways not yet envisioned,
and will make the future of computing more interesting
than the past.

March 1988 Volume 31 Number 3 Communications of the ACM 253

