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The 1977 A C M  Taring Award was presented to John Backus at the A C M  
Annual Conference in Seattle, October 17. In introducing the recipient, Jean 
E. Sammet, Chairman of the Awards Committee, made the following 
comments and read a portion of the final citation. The full announcement 
is in the September 1977 issue of C o m m u n i c a t i o n s ,  page 681. 

"Probably there is nobody in the room who has not heard of Fortran 
and most of you  have probably used it at least Once, or at least looked 
over the shoulder of someone who was writing a Fortran program. There 
are probably almost as many people who have heard the letters BNF but 
don't necessarily know what they stand for. Well, the B is for Backus, 
and the other letters are explained in the formal citation. These two 
contributions, in my opinion, are among the half dozen most important 
technical contributions to the computer field and both were made by 
John Backus [which in the Fortran case also involved some colleagues]. 
It is for these contributions that he is receiving this year's Taring award. 

Author's present address: 91 Saint Germain Ave., San Francisco, CA 94114. 
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The short form of his citation is for 'profound, influential, and lasting 
contributions to the design of practical high-level programming systems, 
notably through his work on Fortran, and for seminal publication o/formal 
procedures for the specifications of programming languages.' 

The most significant part of the full citation is as/ollows: 
'...Backus headed a small IBM group in New York City during the 

early 1950s. The earliest product of this group's efforts was a high-level 
language for scientific and technical computations called Fortran. This 
same group designed the first system to translate Fortran programs into 
machine language. They employed novel optimizing techniques to generate 
fast machine-language programs. Many other compilers for the language 
were developed, first on IBM machines, and later on virtually every make 
of computer. Fortran was adopted as a US. national standard in 1966. 

During the latter part of the 1950s, Backus served on the international 
committees which developed Algol 58 and a later version, Algol 60. The 
language Algol, and its derivative compilers, received broad acceptance 
in Europe as a means for developing programs and as a formal means 
of publishing the algorithms on which the programs are based. 

In 1959, Backus presented a paper at the UNESCO conference in Paris 
on the syntax and semantics of a proposed international algebraic language. 
In this paper, he was the first to employ a formal technique for specifying 
the syntax o/programming languages. The formal notation became known 
as BNF--standing for "Backus Normal Form," or "Backus Naur Form" 
to recognize the further contributions by Peter Naur of Denmark. 

Thus, Backus has contributed strongly both to the pragmatic world 
of problem-solving on computers and to the theoretical world existing at 
the interface between artificial languages and computational linguistics. 
Fortran remains one o/the most widely used programming languages in 
the world. Almost all programming languages are now described with some 
type of formal syntactic definition.' " 

Convent ional  p r o g r a m m i n g  languages  are growing ever more  enormous ,  bu t  not  
stronger.  Inheren t  defects  at the  most  basic level cause  t h e m  to be both  fat and  
weak: their  pr imit ive word-at-a- t ime style of p rog ramming  inher i ted from their  
c o m m o n  a n c e s t o r - - t h e  yon N e u m a n n  computer ,  their  close coupling of seman-  
tics to state transit ions,  their  division of p r o g r a m m i n g  into a world of express ions  
and  a world of s ta tements ,  their  inabili ty to effectively use  powerfu l  combin ing  
forms for bui lding new programs  f rom existing ones, and  their  lack of useful  
ma themat ica l  proper t ies  for reasoning about  programs.  

An al ternative funct ional  style of p rog ramming  is founded  on the use  of 
combining  forms for creating programs.  Functional  p rograms  deal with s t ructured 
data, are often nonrepet i t ive  and  nonrecurs ive ,  are hierarchical ly constructed,  
do not  n a m e  their  a rguments ,  and  do not  require  the  complex mach ine ry  of 
procedure  declarat ions  to become general ly  applicable. Combin ing  forms can 
use  high-level p rog rams  to build still h igher  level ones  in a style not  possible 
in convent ional  languages.  

Associated wi th  the  funct ional  style of p rog ramming  is an  algebra of p rograms  
whose  variables range over p rograms  and  whose  operat ions  are combin ing  forms.  
This  algebra can be used  to t r ans fo rm programs  and  to solve equat ions  whose  
" u n k n o w n s "  are p rog rams  in m u c h  the s ame  way one t r an fo rms  equat ions  in 
h igh  school algebra. These  t rans format ions  are given by algebraic laws and  are 
carried out in the same language in wh ich  p rograms  are writ ten.  Combin ing  forms 
are chosen  not  only for their  p r o g r a m m i n g  power  but  also the  power  of their  
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associated algebraic laws. General theorems of the algebra give the detailed behavior 
and termination conditions for large classes of programs. 

A new class of computing systems uses the functional programming 
style both in its programming language and in its stage transition rules. Unlike 
yon Neumann languages, these systems have semantics loosely coupled to states -- 
only one state transition occurs per major computation. 
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Introduction 
I deeply appreciate the honor of the ACM invitation to give the 

1977 Turing Lecture and to publish this account of it with the details 
promised in the lecture. Readers wishing to see a summary of this paper 
should turn to Section 16, the last section. 

1 
Conventional Programming Languages: 

Fat and Flabby 
Programming languages appear to be in trouble. Each successive 

language incorporates, with a little cleaning up, all the features of its 
predecessors plus a few more. Some languages have manuals exceeding 
500 pages; others cram a complex description into shorter manuals by 
using dense formalisms. The Department of Defense has current plans 
for a committee-designed language standard that could require a manual 
as long as 1,000 pages. Each new language claims new and fashionable 
features, such as strong typing or structured control statements, but 
the plain fact is that few languages make programming sufficiently 
cheaper or more reliable to justify the cost of producing and learning 
to use them. 

Since large increases in size bring only small increases in power, 
smaller, more elegant languages such as Pascal continue to be popular. 
But there is a desperate need for a powerful methodology to help us 
think about programs, and no conventional language even begins to 
meet that need. In fact, conventional languages create unnecessary 
confusion in the way we think about programs. 

For twenty years programming languages have been steadily pro- 
gressing toward their present condition of obesity; as a result, the study 
and invention of programming languages have lost much of their 
excitement. Instead, it is now the province of those who prefer to work 
with thick compendia of details rather than wrestle with new ideas. 
Discussions about programming languages often resemble medieval 
debates about the number of angels that can dance on the head of a 
pin instead of exciting contests between fundamentally differing 
concepts. 

Many creative computer scientists have retreated from inventing 
languages to inventing tools for describing them. Unfortunately, they 
have been largely content to apply their elegant new tools to studying 
the warts and moles of existing languages. After examining the appalling 
type structure of conventional languages, using the elegant tools 
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developed by Dana Scott, it is surprising that so many of us remain 
passively content with that structure instead of energetically searching 
for new ones. 

The purpose of this article is twofold: first, to suggest that basic 
defects in the framework of conventional languages make their expres- 
sive weakness and their cancerous growth inevitable, and second, to 
suggest some alternative avenues of exploration toward the design of 
new kinds of languages. 

2 
Models of 

Computing Systems 
Underlying every programming language is a model of a computing 

system that its programs control. Some models are pure abstractions, 
some are represented by hardware, and others by compiling or inter- 
pretive programs. Before we examine conventional languages more 
closely, it is useful to make a brief survey of existing models as an 
introduction to the current universe of alternatives. Existing models 
may be crudely classified by the criteria outlined below. 

2.1 

Criteria for Models 
2.1.1 Foundat ions .  Is there an elegant and concise mathematical 

description of the model? Is it useful in proving helpful facts about the 
behavior of the model? Or is the model so complex that its description 
is bulky and of little mathematical use? 

2.1.2 History Sensitivity. Does the model include a notion of 
storage, so that one program can save information that can affect 
the behavior of a later program? That is, is the model history sensitive? 

2.1.3 Type of Semantics. Does a program successively transform 
states (which are not programs) until a terminal state is reached Istate- 
transition semantics)? Are states simple or complex? Or can a "program" 
be successively reduced to simpler "programs" to yield a final "normal 
form program," which is the result (reduction semantics)? 

2.1.4 Clarity and Conceptual Usefulness of Programs. Are 
programs of the model clear expressions of a process or computation? 
Do they embody concepts that help us to formulate and reason about 
processes? 

2 .2  

Classification of Models 
Using the above criteria we can crudely characterize three classes 

of models for computing systems--simple operational models, applica- 
tive models, and yon Neumann models. 
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2.2.1 Simple Operat ional  Models. Examples: Turing machines, 
various automata. Foundations: concise and useful. History sensitivity: 
have storage, are history sensitive. Semantics: state transition with very 
simple states. Program clarity: programs unclear and conceptually not 
helpful. 

2.2.2 Applicative Models. Examples: Church's lambda calculus 
[5], Curry's system of combinators [6], pure Lisp [17], functional 
programming systems described in this paper. Foundations: concise and 
useful. History sensitivity: no storage, not history sensitive. Semantics: 
reduction semantics, no states. Program clarity: programs can be clear 
and conceptually useful. 

2.2.3 Von N e u m a n n  Models. Examples: yon Neumann com- 
puters, conventional programming languages. Foundations: complex, 
bulky, not useful. History sensitivity: have storage, are history sensitive. 
Semantics: state transition with complex states. Program clarity: programs 
can be moderately clear, are not very useful conceptually. 

The above classification is admittedly crude and debatable. Some 
recent models may not fit easily into any of these categories. For 
example, the data-flow languages developed by Arvind and Gostelow 
[1], Dennis [7], Kosinski [13], and others partly fit the class of simple 
operational models, but their programs are clearer than those of earlier 
models in the class and it is perhaps possible to argue that some 
have reduction semantics. In any event, this classification wili serve 
as a crude map of the territory to be discussed. We shall be concerned 
only with applicative and yon Neumann models. 

3 
Von N e u m a n n  

Computers 
In order to understand the problems of conventional programming 

languages, we must first examine their intellectual parent, the von 
Neumann computer. What is avon  Neumann computer? When von 
Neumann and others conceived it over thirty years ago, it was an 
elegant, practical, and unifying idea that simplified a number of 
engineering and programming problems that existed then. Although 
the conditions that produced its architecture have changed radically, 
we nevertheless still identify the notion of "computer" with this thirty 
year old concept. 

In its simplest form a v o n  Neumann computer has three parts: 
a central processing unit (or CPU), a store, and a connecting tube 
that can transmit a single word between the CPU and the store (and 
send an address to the store}. I propose to call this tube the yon Neumann 
bottleneck. The task of a program is to change the contents of the 
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store in some major way; when one considers that this task must 
be accomplished entirely by pumping single words back and forth 
through the von Neumann bottleneck, the reason for its name becomes 
clear. 

Ironically a large part of the traffic in the bottleneck is not useful 
data but merely names of data, as well as operations and data used 
only to compute such names. Before a word can be sent through 
the tube its address must be in the CPU: hence it must either be 
sent through the tube from the store or be generated by some CPU 
operation. If the address is sent from the store, then its address must 
either have been sent from the store or generated in the CPU, and 
so on. If, on the other hand, the address is generated in the CPU, 
it must be generated either by a fixed rule [e.g., "add 1 to the program 
counter" I or by an instruction that was sent through the tube, in 
which case its address must have been sent ... and so on. 

Surely there must be a less primitive way of making big changes 
in the store than by pushing vast numbers of words back and forth 
through the von Neumann bottleneck. Not only is this tube a literal 
bottleneck for the data traffic of a problem, but, more importantly, 
it is an intellectual bottleneck that has kept us tied to word-at-a-time 
thinking instead of encouraging us to think in terms of the larger 
conceptual units of the task at hand. Thus programming is basically 
planning and detailing the enormous traffic of words through the 
yon Neumann bottleneck, and much of that traffic concerns not signifi- 
cant data itself but where to find it. 

4 
Von N e u m a n n  

Languages 
Conventional programming languages are basically high-level, 

complex versions of the yon Neumann computer. Our thirty year 
old belief that there is only one kind of computer is the basis of 
our belief that there is only one kind of programming language, the 
conventional--yon Neumann--language. The differences between 
Fortran and Algol 68, although considerable, are less significant than 
the fact that both are based on the programming style of the yon 
Neumann computer. Although I refer to conventional languages as 
"yon Neumann languages" to take note of their origin and style, 
I do not, of course, blame the great mathematician for their complex- 
ity. In fact, some might say that I bear some responsibility for that 
problem. 

Von Neumann programming languages use variables to imitate 
the computer's storage cells: control statements elaborate its jump 
and test instructionsl and assignment statements imitate its fetching, 
storing, and arithmetic. The assignment statement is the yon Neumann 
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bottleneck of programming languages and keeps us thinking in word- 
at-a-time terms in much the same way the computer's bottleneck 
does. 

Consider a typical program; at its center are a number of assignment 
statements containing some subscripted variables. Each assignment 
statement produces a one-word result. The program must cause these 
statements to be executed many times, while altering subscript values, 
in order to make the desired overall change in the store, since it must 
be done one word at a time. The programmer is thus concerned 
with the flow of words through the assignment bottleneck as he designs 
the nest of control statements to cause the necessary repetitions. 

Moreover, the assignment statement splits programming into two 
worlds. The first world comprises the right sides of assignment 
statements. This is an orderly world of expressions, a world that has 
useful algebraic properties lexcept that those properties are often 
destroyed by side effects). It is the world in which most useful com- 
putation takes place. 

The second world of conventional programming languages is the 
world of statements. The primary statement in that world is the assign- 
ment statement itself. All the other statements of the language exist 
in order to make it possible to perform a computation that must be based 
on this primitive construct: the assignment statement. 

This world of statements is a disorderly one, with few useful 
mathematical properties. Structured programming can be seen as 
a modest effort .to introduce some order into this chaotic world, but 
it accomplishes little in attacking the fundamental problems created 
by the word-at-a-time von Neumann style of programming, with its 
primitive use of loops, subscripts, and branching flow of control. 

Our fixation on von Neumann languages has continued the primacy 
of the von Neumann computer, and our dependency on it  has made 
non-yon Neumann languages uneconomical and has limited their 
development. The absence of full-scale, effective programming styles 
founded on non-von Neumann principles has deprived designers of 
an intellectual foundation for new computer architectures. IFor a 
brief discussion of that topic, see Section 15.1 

Applicative computing systems' lack of storage and history Sensi- 
tivity is the basic reason they have not provided a foundation for 
computer design. Moreover, most applicative systems employ the 
substitution operation of the lambda calculus as their basic operation. 
This operation is one of virtually unlimited power, but its complete 
and efficient realization presents great difficulties to the machine 
designer. Furthermore, in an effort to introduce Storage and to improve 
their efficiency on von Neumann computers, applicative systems 
have tended to become engulfed in a large von Neumann system. For 
example, pure Lisp is often buried in large extensions w i th  many 
von Neumann features. The resulting complex systems offer little 
guidance to the machine designer. 
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5 
Comparison  

of von N e u m a n n  
and Funct ional  Programs 

To get a more detailed picture of some of the defects of yon 
Neumann languages, let us compare a conventional program for inner 
product with a functional one written m a simple language to be detailed 
further on. 

5 .1  

A y o n  N e u m a n n  Program 
for Inner Product 

c : = O  

for i := 1 s tep 1 u n t i l  n do  

c := c + a[i] xb[i] 

Several properties of this program are worth noting: 

(a) Its statements operate on an invisible "state" according to 
complex rules. 

(b) It is not hierarchical. Except for the right side of the assignment 
statement, it does not construct complex entities from simpler ones. 
[Larger programs, however, often do. I 

(c) It is dynamic and repetitive. One must  mental ly execute it to 
understand it. 

(d) It computes word-at-a-time by repetition [of the assignment) and 
by modification {of variable i). 

(e) Part of the data, n, is in the program; thus it lacks generality 
and works only for vectors of length n. 

(f) It names its arguments; it can only be used for vectors a and 
b. To become general  it requires a procedure declaration. These involve 
complex issues le.g., call-by-name versus call-by-value}. 

(g) Its "housekeeping" operations are represented by symbols 
in scattered places {in the for  statement and the subscripts in the 
assignment). This makes it impossible to consolidate housekeeping 
operations, the most common of all, into single, powerful, widely useful 
operators. Thus in programming those operations one must always start 
again at square one, writing "for  i := ..." and "for  j :-- ..." followed 
by assignment statements sprinkled with i's and j's. 
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5.2 
A Functional Program 

for Inner Product 

I ~ 1 7 7  
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Def  Innerproduct  = (Insert +)  o (ApplyToAll x)  o Transpose 

Or, in abbreviated form: 

Def  IP = (/+)o(o~x)oTrans. 

Composition (o), Insert (/), and ApplyToAll (cO are hmetional 
forms that combine existing functions to form new ones. Thus fog 
is the function obtained by applying first g and then f, and a f  is 
the function obtained by applying f r o  every member of the argument. 
If we write f : x for the result of applying f to the object x, then we 
can explain each step in evaluating Innerproduct  applied to the pair 
of vectors ((1, 2, 3), (6, 5, 4)) as follows: 

IP:<(1,2,3>,(6,5,4)) 
Definition of IP 
Effect of composition, o 
Applying Transpose 
Effect of ApplyToAll, c~ 
Applying × 
Effect of Insert, / 
Applying + 
Applying + again 

:=~ ( /+)o  (a X)oTrans: ((1,2,3), (6,5,4)) 
=~ (/+):((c~x):Trans: ((1,2,3), (6,5,4)))) 
==~ ( / + ) : ( ( a x ) :  ((1,6), (2,5), (3,4))) 

( /+ ) :  (x :  (1 ,6) ,  x : (2,5), x :  (3,4)) 
( /+ ) :  (6,10,12) 
+ :  (6, + :  (10,12>) 
+ : (6,22) 

==~ 28 

Let us compare the properties of this program with those of the von 
Neumann program. 

(a) It operates only on its arguments. There are no hidden states 
or complex transition rules. There are only two kinds of rules, one 
for applying a function to its argument, the other for obtaining the 
function denoted by a functional form such as composition, fog, or 
ApplyToAll, af, when one knows the f u n c t i o n s f a n d  g, the parameters 
of the forms. 

(b) It is hierarchical, being built from three simpler functions (+, 
×, Trans) and three functional forms fog, af and/ f .  

(c) It is static and nonrepetitive, in the sense that its structure is 
helpful in understanding it without mentally executing it. For example, 
if one understands the action of the forms fog and o~f and of the func- 
tions x and Trans, then one understands the action of cxx and of 
( a x )  oTrans, and so on. 

(d) It operates on whole conceptual units, not words; it has three 
steps; no step is repeated. 

(e) It incorporates no data; it is completely general; it works for any 
pair of conformable vectors. 
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(f) It does not name its arguments; it can be applied to any pair of 
vectors without any procedure declaration or complex substitution 
rules. 

(g) It employs housekeeping forms and functions that are generally 
useful in many other programs; in fact, only + and x are not con- 
cerned with housekeeping. These forms and functions can combine 
with others to create higher level housekeeping operators. 

Section 14 sketches a kind of system designed to make the above 
functional style of programming available in a history-sensitive system 
with a simple framework, but much work remains to be done before 
the above applicative style can become the basis for elegant and 
practical programming languages. For the present, the above comparison 
exhibits a number of serious flaws in von Neumann programming 
languages and can serve as a starting point in an effort to account 
for their present fat and flabby condition. 

6 
Language Frameworks 

versus 
Changeable  Parts 

Let us distinguish two parts of a programming language. First, 
its framework which gives the overall rules of the system, and second, 
its changeable parts, whose existence is anticipated by the framework 
but whose particular behavior is not specified by it. For example, 
the for statement, and almost all other statements, are part of Algol's 
framework but library functions and user-defined procedures are 
changeable parts. Thus the framework of a language describes its fix- 
ed features and provides a general environment for its changeable 
features. 

Now suppose a language had a small framework which could 
accommodate a great variety of powerful features entirely as changeable 
parts. Then such a framework could support many different features 
and styles without being changed itself. In contrast to this pleasant 
possibility, yon Neumann languages always seem to have an immense 
framework and very limited changeable parts. What causes this to 
happen? The answer concerns two problems of von Neumann 
languages. 

The first problem results from the von Neumann style of word-at- 
a-time programming, which requires that words flow back and forth 
to the state, just like the flow through the yon Neumann bottleneck. 
Thus a yon Neumann language must have a semantics closely coupled 
to the state, in which every detail of a computation changes the state. 
The consequence of this semantics closely coupled to states is that every 
detail of every feature must be built into the State and its transition rules. 
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Thus every feature of a v o n  Neumann language must be spelled 
out in stupefying detail in its framework. Furthermore, many complex 
features are needed to prop up the basically weak word-at-a-time 
style. The result is the inevitable rigid and enormous framework of a 
von Neumann language. 

I ~ 7 7  
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7 
Changeable Parts 

and Combining Forms 
The second problem of yon Neumann languages is that their 

changeable parts have so little expressive power. Their gargantuan 
size is eloquent proof of this; after all, if the designer knew that all 
those complicated features, which he now builds into the framework, 
could be added later on as changeable parts, he would not be so eager 
to build them into the framework. 

Perhaps the most important element in providing powerful 
changeable parts in a language is the availability of combining forms 
that can be generally used to build new procedures from old ones. 
Von Neumann languages provide only primitive combining forms, 
and the yon Neumann framework presents obstacles to their full 
use. 

One obstacle to the use of combining forms is the split between 
the expression world and the statement world in yon Neumann langu- 
ages. Functional forms naturally belong to the world of expressions; 
but no matter how powerful they are they can only build expressions 
that produce a one-word result. And it is in the statement world that 
these one-word results must be combined into the overall result. 
Combining single words is not what we really should be thinking 
about, but it is a large part of programming any task in yon Neumann 
languages. To help assemble the overall result from single words 
these languages provide some primitive combining forms in the state- 
ment world--the for, while, and if-then-else statements--but the 
split between the two worlds prevents the combining forms in either 
world from attaining the full power they can achieve in an undivided 
world. 

A second obstacle to the u ~  of combining forms in yon Neumann 
languages is their use of elaborate naming conventions, which are 
further complicated by the substitution rules required in calling pro- 
cedures. Each of these requires a complex mechanism to be built into 
the framework so that variables, subscripted variables, pointers, file 
names, procedure names, call-by-value formal parameters, call-by-name 
formal parameters, and so on, can all be properly interpreted. All 
these names, conventions, and rules interfere with the use of simple 
combining forms. 
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8 
APL versus  

Word-at-a-Time Programming  
Since I have said so much about word-at-a-time programming, I 

must now say something about APL [12]. We owe a great debt to 
Kenneth Iverson for showing us that there are programs that are 
neither word-at-a-time nor dependent on lambda expressions, and 
for introducing us to the use of new functional forms. And since 
APL assignment statements can store arrays, the effect of its functional 
forms is extended beyond a single assignment. 

Unfortunately, however, APL still splits programming into a world 
of expressions and a world of statements. Thus the effort to write 
one-line programs is partly motivated by the desire to stay in the 
more orderly world of expressions. APL has exactly three functional 
forms, called inner product, outer product, and reduction. These are 
sometimes difficult to use, there are not enough of them, and their 
use is confined to the world of expressions. 

Finally, APL semantics is still too closely coupled to states. Conse- 
quently, despite the greater simplicity and power of the language, its 
framework has the complexity and rigidity characteristic of yon 
Neumann languages. 

9 
Von N e u m a n n  Languages Lack 
Useful  Mathemat ica l  Properties  

So far we have discussed the gross size and inflexibility of yon 
Neumann languages; another important defect is their lack of useful 
mathematical properties and the obstacles they present to reasoning 
about programs. Although a great amount of excellent work has been 
published on proving facts about programs, yon Neumann languages 
have almost no properties that are helpful in this direction and have 
many properties that are obstacles (e.g., side effects, aliasing]. 

Denotational semantics [23] and its foundations [20, 21] provide an 
extremely helpful mathematical understanding of the domain and func- 
tion spaces implicit in programs. When applied to an applicative 
language (such as that of the "recursive programs" of [16]}, its founda- 
tions provide powerful tools for describing the language and for proving 
properties of programs. When applied to a yon Neumann language, 
on the other hand, it provides a precise semantic description and is 
helpful in identifying trouble spots in the language. But the complexity 
of the language is mirrored in the complexity of the description, which 
is a bewildering collection of productions, domains, functions, and equa- 
tions that is only slightly more helpful in proving facts about programs 
than the reference manual of the language, since it is less ambiguous. 
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Axiomatic semantics [11] precisely restates the inelegant properties 
of von Ne umann  programs (i.e., t ransformations on states) as transfor- 
mations on predicates. The word-at-a-time, repetitive game is not 
thereby changed, mere ly  the playing field. The complexity of this 
axiomatic game of proving facts about von Neumann  programs makes 
the successes of its practi t ioners all the more  admirable. Their  success 
rests on two factors in addition to their  ingenuity: First, the game 
is restricted to small, weak subsets of full von Neumann  languages 
that have states vastly simpler than real ones. Second, the new playing 
field (predicates and their  transformations) is richer, more orderly 
and effective than the old (states and their transformations). But restrict- 
ing the game and transferring it to a more  effective domain does 
not enable it to handle real programs {with the necessary complexities 
of procedure  calls and aliasing), nor  does it eliminate the clumsy 
propert ies of the basic von Neumann  style. As axiomatic semantics 
is extended to cover more of a typical von Neumann  language, it 
begins to lose its effectiveness with the increasing complexity that is 
required. 

Thus denotational  and axiomatic semantics are descriptive for- 
malisms whose foundat ions embody  elegant and powerful  concepts; 
but  using them to describe a v o n  Neumann  language cannot  produce 
an elegant and powerful  language any more  than the use of elegant 
and modern  machines to build an Edsel can produce an elegant and 
modern  car. 

In any case, proofs about  programs use the language of logic, not 
the language of programming.  Proofs talk about programs but  cannot 
involve them directly since the axioms of von Neumann  languages 
are so unusable. In contrast, many  ordinary proofs are derived by 
algebraic methods.  These methods  require a language that has certain 
algebraic properties.  Algebraic laws can then be used in a rather  
mechanical  way to t ransform a problem into its solution. For example, 
to solve the equation 

a x + b x - - a + b  

for x (given that a+b  ~ 0), we mechanical ly apply the distributive, 
identity, and cancellation laws, in succession, to obtain 

(a + b)x = a + b 

(a + b)x = (a + b ) l  

X---- 1. 

Thus we have proved that x -- 1 without  leaving the "language" of 
algebra. Von Neumann  languages, with their grotesque syntax, offer 
few such possibilities for t ransforming programs. 

As we shall see later, programs can be expressed in a language that 
has an associated algebra. This algebra can be used to t ransform pro- 

I ~ ) 7 7  

I u r |  ng 
A~v~H'd 
I.el lune 
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grams and to solve some equations whose "unknowns" are programs, 
in much the same way one solves equations in high school algebra. 
Algebraic transformations and proofs use the language of the programs 
themselves, rather than the language of logic, which talks about 
programs. 

10 
W h a t  Are the Al ternat ives  

to v o n  N e u m a n n  Languages? 
Before discussing alternatives to yon Neumann languages, let me 

remark that I regret the need for the above negative and not very precise 
discussion of these languages. But the complacent acceptance most of 
us give to these enormous, weak languages has puzzled and disturbed 
me for a long time. I am disturbed because that acceptance has con- 
sumed a vast effort toward making yon Neumann languages fatter that 
might have been better spent in looking for new structures. For this 
reason I have tried to analyze some of the basic defects of conventional 
languages and show that those defects cannot be resolved unless we 
discover a new kind of language framework. 

In seeking an alternative to conventional languages we must first 
recognize that a system cannot be history sensitive (permit execution 
of one program to affect the behavior of a subsequent one) unless the 
system has some kind of state (which the first program can change and 
the second can access). Thus a history-sensitive model of a computing 
system must have a state-transition semantics, at least in this weak 
sense. But this does no t  mean that every computation must depend 
heavily on a complex state, with many state changes required for each 
small part of the computation (as in yon Neumann languages). 

To illustrate some alternatives to von Neumann languages, I propose 
to sketch a class of history-sensitive computing systems, where each 
system: (a) has a loosely coupled state-transition semantics in which 
a state transition occurs only once in a major computation; (b) has 
a simply structured state and simple transition rules; (c) depends 
heavily on an underlying applicative system both to provide the basic 
programming language of the system and to describe its state transitions. 

These systems, which I call applicative state transition (or AST) 
sys tems ,  are described in Section 14. These simple systems avoid 

many of the complexities and weaknesses of yon Neumann languages 
and provide for a powerful and extensive set of changeable parts. 
However, they are sketched only as crude examples of a vast area 
of non-von Neumann systems with various attractive properties. I 
have been studying this area for the past three or four years and have 
not yet found a satisfying solution to the many conflicting requirements 
that a good language must resolve. But I believe this search has indicated 
a useful approach to designing non-yon Neumann languages. 
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This approach involves four elements, which can be summarized 
as follows. 

(a) A functional style of programming without variables. A simple, 
informal functional programming CFPI system is described. It is 
based on the use of combining forms of FP programs. Several programs 
are given to illustrate functional programming. 

(b) An algebra of functional programs. An algebra is described whose 
variables denote FP functional programs and whose "operations" 
are FP functional forms, the combining forms of FP programs. Some 
laws of the algebra are given. Theorems and examples are given that 
show how certain function expressions may be transformed into 
equivalent infinite expansions that explain the behavior of the function. 
The FP algebra is compared with algebras associated with the classical 
applicative systems of Church and Curry. 

(c) A formal functional programming system. A formal IFFPI system 
is described that extends the capabilities of the above informal FP 
systems. An FFP system is thus a precisely defined system that pro- 
vides the ability to use the functional programming style of FP systems 
and their algebra of programs. FFP systems can be used as the basis 
for applicative state transition systems. 

(d) Applicative state transition systems. As discussed above. 

The rest of the paper describes these four elements and ends with 
a summary of the paper. 

11 
Functional 

Programming Systems 
{FP Systems} 

11.1 

I n t r o d u c t i o n  

In this section we give an informal description of a class of simple 
applicative programming systems called functional programming (FP} 
systems, in which "programs" are simply functions without variables. 
The description is followed by some examples and by a discussion of 
various properties of FP systems. 

An FP system is founded on the use of a fixed set of combining forms 
called functional forms. These, plus simple definitions, are the only 
means of building new functions from existing ones; they use no 
variables or substitution rules, and they become the operations of an 
associated algebra of programs. All the functions of an FP system are 
of one type: they map objects into objects and always take a single 
argument. 
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In contrast, a lambda-calculus-based system is founded on the 
use of the lambda expression, with an associated set of substitution 
rules for variables, for building new functions. The lambda expression 
[with its substitution rules) is capable of defining all possible computable 
functions of all possible types and of any number of arguments. 
This freedom and power has its disadvantages as well as its obvious 
advantages. It is analogous to the power of unrestricted control 
statements in conventional languages: with unrestricted freedom comes 
chaos. If one constantly invents new combining forms to suit the 
occasion, as one can in the lambda calculus, one will not become 
familiar with the style or useful properties of the few combining forms 
that are adequate for all purposes. Just as structured programming 
eschews many control statements to obtain programs with simpler 
structure, better properties, and uniform methods for understanding 
their behavior, so functional programming eschews the lambda expres- 
sion, substitution, and multiple function types. It thereby achieves 
programs built with familiar functional forms with known useful 
properties. These programs are so structured that their behavior can 
often be understood and proven by mechanical use of algebraic tech- 
niques similar to those used in solving high school algebra problems. 

Functional forms, unlike most programming constructs, need not 
be chosen on an ad hoc basis. Since they are the operations of an 
associated algebra, one chooses only those functional forms that not 
only provide powerful programming constructs, but that also have 
attractive algebraic properties: one chooses them to maximize the 
strength and utility of the algebraic laws that relate them to other func- 
tional forms of the system. 

In the following description we shall be imprecise in not distin- 
guishing between (a) a function symbol or expression and (b) the 
function it denotes. We shall indicate the symbols and expressions 
used to denote functions by example and usage. Section 13 describes 
a formal extension of FP systems (FFP systems); they can serve to clarify 
any ambiguities about FP systems. 

11.2 
Description 

An FP system comprises the  following: 

(1) a set O of objects; 
(2) a set F of functions f that map objects into objects; 

(3) an operation, application; 
(4) a set F of functional forms; these are used to combine existing 

functions, or objects, to form new functions in F; 

(5) a set D of definitions that define some functions in F and assign a 
name to each. 
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What  follows is an informal  descript ion of each of the above entities 
wi th  examples.  

11.2.1 Objec t s ,  O. An object x is ei ther an atom, a sequence 
(x~ . . . . .  x.) whose  elements x~ are objects, or ± ( "bo t tom"  or "un- 
defined").  Thus  the choice of a set A of a toms de te rmines  the set 
of objects. We shall take A to be the set of nonnul l  strings of capital 
letters, digits, and special symbols  not used by the notat ion of the 
FP system. Some of these strings belong to the class of a toms called 
"numbers : '  The a tom ¢ is used to denote  the emp ty  sequence  and 
is the only object which  is both  an a tom and a sequence.  The a toms 
T and F are used to denote  "true" and "false." 

There  is one impor tan t  constraint  in the construct ion of objects: 
if x is a sequence  with  ± as an element ,  then x = ±. That  is, the 
"sequence  constructor"  is "±-preserving."  Thus no proper  sequence 
has ± as an element .  

Examples of objects 

± 1.5 q5 AB3 (AB, 1,2.3) (A,((B),C),D) (A, ±)= ± 

11.2.2 App l i ca t i on .  An FP system has a single operation, applica- 
tion. If f is a funct ion and x is an object, t h e n f : x  is an application and 
denotes  the object which  is the result  of applying f to x. f is the operator 
of the applicat ion and x is the operand. 

Examples o f  applications 

+ : ( 1 , 2 ) = 3  tl:(A,B,C) = (B,C) i:(A,B,C) = A 2:(A,B,C) = B 

11.2.3 F u n c t i o n s ,  E All functions f i n  F map  objects into objects 
and are bottom-preserving: f :  ± = ±, for all f in E Every function in F 
is ei ther primitive, that is, supplied with  the system, or it is defined 
Isee below I, or it is a functional form {see below}. 

It is somet imes  useful to distinguish be tween  two cases in which  
f :x  = ±. If the computa t ion  f o r f ; x  terminates  and yields the object ±, 
we say f is undefined at x, that  is, f te rminates  but  has no meaningful  
value at x. Otherwise  we say f is nonterminating at x. 

Examples of  primitive functions. Our intention is to provide FP 
sys tems with  widely  useful  and powerfu l  pr imit ive funct ions ra ther  
than weak  ones that could then be used to define useful  ones. The 
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fo l lowing examples  def ine  some  typical  pr imi t ive  funct ions ,  m a n y  of  
w h i c h  are used  in later examples  of  p rograms .  In  the fo l lowing defini- 
t ions we  use a var ian t  of  M c C a r t h y ' s  condi t iona l  express ions  [17]; thus  

we  wri te  

p t - ~ e l ;  ... ; pn--~en; en+l 

ins tead of  M c C a r t h y ' s  express ion  

( p i n e 1  . . . . .  pn-~en,  T-~ en+ l). 

The  fo l lowing def ini t ions  are to hold  for  all objects  x, xi, y, Yi, z, zi. 

Selec tor  f u n c t i o n s  

l : x - - - x  = (xl . . . . .  X n ) ~ X l ;  _L 

and  for  a ny  posi t ive in teger  s 

s : x  ~ x = (x~ . . . . .  xn) & n _> s ~ xs; ± 

Thus,  for example:  3:(A,B,C) = C and  2: (A)  = ±.  Note  that  the func-  
t ion symbo l s  1, 2, etc. are dist inct  f r o m  the  a toms  1, 2, etc. 

Tail  

t l : x - - - x  = (xl) ~ ¢;  x = (xl . . . . .  xn) & n > 2 ~ ( x 2  . . . . .  Xn); ± 

I d e n t i t y  

i d : x  - x 

A t o m  

a t o m  : x --- x is an  a t o m  ~ T ; x  #: ± ~  F ; ±  

Equals 

e q : x - - - x  = (y,z) & y = z  ~ T; x =  (y,z) & y ~ z - ~ F ;  _L 

N u l l  

n u l l : x  - x = ¢ ~  T; x-~ ± ~ F ;  ± 

Reverse  

r e v e r s e : x ~ x = ¢ ~ q ~ ;  x = ( x l  . . . . .  X n ) ~ ( x , ,  ... , x l ) ;  -l_ 

D i s t r i b u t e  f r o m  left; d i s t r i bu t e  f r o m  r igh t  

d i s t l : x ~ x = ( y , c h ) ~ c k ;  x = ( y , ( z ~  . . . . .  Zn ) )~ ( ( y , z~ )  . . . . .  (Y,Zn)); _1_ 

dis tr :x--=x=(qS,y)~O0;  x = ( ( y ~  . . . . .  Yn), Z)~((Y~,Z)  . . . . .  (Yn ,Z) ) ;±  
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Length 

l e n g t h : x ~ - x = ( x l  . . . . .  X n ) ~ n ;  x = ~ 0 ; ±  

Add, subtract, multiply, and divide 

+ :x ~ x = ( y , z )  & y,z are n u m b e r s ~ y + z ;  ± 

- :x ~ x =  (y,z) & y,z are n u m b e r s ~ y - z ;  ± 

× :x ~-x=(y,z)  & y,z are n u m b e r s ~ y × z ;  ± 

+ :x ~ x = ( y , z )  & y,z are n u m b e r s ~ y + z ;  ± (where  y + 0  = ±)  

Transpose 

t r a n s : x  ~-x=(~b . . . . .  ~ b ) ~ b ;  x=(x l  . . . . .  Xn)~(yl  . . . . .  Ym); _L 

w h e r e  

X i = ( X i l  . . . . .  Xim ) and  yj = (xl} . . . . .  Xnj), 1 < i < n ,  1 < j  < m. 

And, or, not 

a n d : x - - - x =  ( T , T ) ~  T; x=(T ,F)  V x = ( F , T )  V x =  (F ,F)~F;  ± 

etc. 

Append left; append right 

apnd l : x~ -x=(y ,O)~(y ) ;  x=(y,(z~ . . . . .  Zn))~(y,z~ . . . . .  zn); ± 

a p n d r  :x -= x = (~b,z) ~ (z); x = ((Yl . . . . .  yn) ,z) ~ (Yl . . . . .  Yn,Z); ± 

Right  selectors; right tail 

l r : x  ~ x = ( x l  . . . . .  xn)~Xn;  ± 

2 r : x - - - x = ( x l  . . . . .  Xn) & n > 2 ~ X n - l ; ±  

etc. 

t l r : x - x = ( x ~ ) ~ 6 ;  x = ( x l  . . . . .  X n ) & n > 2 ~ ( x ~  . . . . .  x n - 1 ) ; ±  

Rotate left; rotate right 

ro t l : x  ~ x = 4 ~ , ~ ;  x=(x l ) -~(x l ) ;  

x = ( x l  . . . . .  Xn) & n > _ 2 ~ ( x 2  . . . . .  Xn,Xl); ± 

etc. 

11 .2 .4  F u n c t i o n a l  f o r m s ,  E A func t iona l  f o r m  is an  express ion  
deno t ing  a funct ion;  that  func t ion  de pe nds  on the func t ions  or  objects  
w h i c h  are the parameters of  the expression.  Thus,  for  example,  if f and  
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g are any functions, then fog is a functional  form, the composition of 
f a n d  g , fand  g are its parameters,  and it denotes the function such that, 
for any object x, 

(fog) :x = f: (g :x). 

Some functional forms may have objects as parameters.  For example, 
for any object x, £ is a functional  form, the constant funct ion of x, so 
that for any object y 

~ : y - y ± ~ ± ;  x. 

In particular, i is the e v e r y w h e r e - ±  function. 
Below we give some functional forms, many  of which are used later 

in this paper. We use p, f,  and g with and without  subscripts to denote  
arbitrary functions; and x, x, . . . . .  xn, y as arbi t rary objects. Square 
brackets [...] are used to indicate the functional  form for construction, 
which denotes a function, whereas  pointed brackets (...) denote  
sequences, which are objects. Parentheses are used both in particular 
functional forms (e.g., in condition) and generally to indicate grouping. 

Composition 

( f o g ) : x ~ g : ( g : x )  

Construction 

[ A  . . . .  , fn]  : X "  ( f , : x  . . . . .  f n :X)  

(Recall that since ( . . . .  ± . . . .  ) = ± and all functions are ±- preserv- 
ing, so is [f ,  . . . . .  fn].)  

Condition 

( p ~ f ;  g ) : x - - - ( p : x ) = T ~ f : x ;  ( p : x ) = F ~ g : x ; ±  

Conditional expressions (used outside of FP systems to describe their  
functions) and the functional form condition are both identified by " ~  ". 
They are quite different although closely related, as shown in the above 
definitions. But no confusion should arise, since the elements  of a 
conditional expression all denote  values, whereas  the elements  of 
the functional form condition all denote functions, never  values. When  
no ambiguity arises we omit right-associated parentheses;  we write, 
for example, 

p , ~ A ; p 2 ~ f z ;  g for (pl---~A; (p2---~A; g)).  
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1 9 7 7  

'1 , , , ' i , l g  

I , f l ' l  u I't" 

Constant  (Here x is an object parameter.} 

x :y  -= y = _l_~_J_; x 

Insert  

/f:x ~ X = ( X l S ~ X l ;  

X=(Xl . . . . .  Xn) & n > 2 ~ f : ( x l ,  /f: (x2 . . . . .  XnS); _k 

If f has a unique right unit uf  ~ _1_, where f :  (x,uf5 E {x, _1_} for all 
objects x, then the above definition is extended : /f: 4~ = uf. Thus 

/ + : ( 4 , 5 , 6 )  = + : ( 4 ,  + : ( 5 ,  / +:(65}) = + : ( 4 ,  +:(5,655 =15 

/ + : ~ = 0  

Apply to all 

af:x ~ x = ~b~6;  x = ( x ,  . . . . .  xnS~( f : x ,  . . . . .  f:Xn);-l- 

Binary to unary (x is an object parameter} 

( b u f x )  :y ~-f: (x,y) 

Thus 

(bu + 1 ) : x = 1  + x 

While  

( w h i l e p f ) : x ~ - p : x = T ~ ( w h i l e p f ) : ( f : x ) ;  p : x = F ~ x ;  _1_ 

The above functional forms provide an effective method for com- 
puting the values of the functions they denote  (if they terminate} 
provided one can effectively apply their funct ion parameters.  

11.2.5 Def in i t ions .  A definition in an FP system is an expression 
of the form 

Def  l e t  

where  the left side l is an unused  function symbol and the right 
side r is a functional form (which may depend on l}. It expresses 
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the fact that the symbol  l is to denote  the funct ion given by  r. Thus 
the definition D e f  lastl - 1 °reverse defines the function lastl that pro- 
duces the last e lement  of a sequence  {or -LI. Similarly, 

D e f  last --- n u l l o t l ~ l ;  lastotl 

defines the funct ion last, which  is the same as lastl. Here  in detail 
is h o w  the definit ion would  be used to compute  last: (1,2): 

last: (1,2) = 
definition of last =-~ (nullotl--.l; last otl):(1,2) 
action of the form (p~ f ;g )  ~ lastotl:(1,2) 

since nullotl: (1,2) = null: (2) = F 
action of the form fog ~ last:(tl:(1,2)) 
definition of the primitive tail =~. last : (2) 
definition of last =-~ (null otl ~ 1; last otl) : (2) 
action of the form (p~ f ;g )  =~. 1:(2) 

since null otl : (2) = null: ~ = T 
definition of selector 1 =~. 2 

The above illustrates the s imple rule: to apply  a def ined symbol ,  
replace it by  the right side of its definition. Of  course, some definit ions 
m a y  define nonte rmina t ing  functions.  A set D of definit ions is well 
formed if no two left sides are the same.  

11.2 .6  S e m a n t i c s .  It can be seen f rom the above  that  an FP 
sys tem is de te rmined  by  choice of the following sets: (a) The set 
of a toms A Iwhich de te rmines  the set of objects}. (b) The set of 
pr imit ive  funct ions P. (c) The set of funct ional  forms  F. (d) A well  
fo rmed  set of definitions D. To unders tand  the semant ics  of such a 
sys tem one needs  to k n o w  how to compute  f : x  for any  funct ion f 
and any  object x of the system. There  are exactly four possibilities for f :  

(1) f is a pr imi t ive  function; 

(2) f is a funct ional  form; 

(3) there is one definit ion in D, D e f f - =  r; and 

(4) none of the above.  

I f f i s  a pr imit ive function, then one has its description and knows  how 
to apply  it. If  f is a funct ional  form, then the descript ion of the fo rm 
tells how to c o m p u t e f : x  in t e rms  of the pa rame te r s  of the form, which  
can be done by  fur ther  use of these rules. I f f i s  defined, D e f f ~ -  r, as 
in (3), then  to f i n d f : x  one computes  r:x, which can be done by  fur ther  
use of these rules. If none  of these, then  f : x  ~ ±.  Of course, the use 
of these rules m a y  not te rmina te  for s o m e f a n d s o m e  x, in which  case 
we  assign the value f : x  ---±. 
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1 1 . 3  

Examples 
of Functional Programs 

The following examples illustrate the functional p rogramming  style. 
Since this style is unfamil iar  to most  readers,  it may  cause confusion 
at first; the impor tan t  point  to r e m e m b e r  is that  no par t  of a funct ion 
definition is a result  itself. Instead,  each part  is a function that  mus t  
be applied to an a rgument  to obtain a result. 

1 ~ 7 7  

' l u r i n g  

A ~ a r d  

] , t ' ( ' l  I I  I'l" 

11.3.1 Factorial 

D e f  I ~- e q 0 ~ l ;  xo[ id , !osub l ]  

where  

D e f  eq0 --- eqo[id,6]  

D e f  sub l  --- - o[id, ]] 

Here  are some of the in termedia te  expressions an FP sys tem would  
obtain in evaluating !:2: 

I:2 = ~ . ( e q 0 - o j ; x o [ i d , ! o s u b l ] ) : 2  ~ x o [ i d , ! o s u b l ] : 2  

=~" x : ( i d : 2 ,  ! o s u b l : 2 ) : ~ "  x : ( 2 , ! : l )  

=-~ x : ( 2 ,  x : ( 1 ,  !:0)) 

=~. ×:(2,×:(1,1:0))==~.×:(2,×:(1,1)) =~-×: (2 ,1 )=~-2 .  

In Section 12 we shall see how theorems  of the algebra of FP programs  
can be used to prove  that  ! is the factorial  function. 

11.3.2 I n n e r  P r o d u c t .  We have seen earlier how this definit ion 
works.  

D e f  IP -~ ( /+)o(o~X)otrans 

11.3.3 M a t r i x  M u l t i p l y .  This matrix multiplication program yields 
the product  of any  pair  (re,n) of conformable  matrices,  where  each 
matr ix  m is represented  as the sequence of its rows: 

m = (ml  . . . . .  m , )  

where  

mi = (rnil . . . . .  mis) for i = 1 . . . . .  r. 
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De f  M M ~  (aaIP)o(adist l )odistro[1,  trans 02] 

The program MM has four steps, reading from right to left; each is 
applied in turn, beginning with [1, transo2], to the result of its pre- 
decessor. If the argument  is (re,n), then the first step yields 

(m,n'/ 

where  n' = t rans :n .  The second step yields 

((m,n') ,  . . . ,  (mr,n')), 

where  the m~ are the rows of m. The third step, o~distl, yields 

(distl: (ml, n') . . . .  , distl: (mr,n')) = (Pl . . . . .  P r )  

where  

Pi = distl:(mi,n') = ((mi,nl') . . . . .  (mi,ns')) for i -- 1 . . . . .  r 

and nj' is the j th co lumn of n [the j th row of n' I. Thus Pi, a sequence 
of row and column pairs, corresponds to the ith product  row. The 
operator  o~aIP, or o~(odP), causes cAP to be applied to each Pi, which 
in turn causes IP to be applied to each row and column pair in each 
Pi. The result of the last step is therefore  the sequence of rows com- 
prising the product  matrix. If either matr ix is not rectangular, or if 
the length of a row of m differs f rom that of a co lumn of n, or if 
any e lement  of m or n is not a number,  the result is _l_. 

This program MM does not name its arguments  or any intermediate 
results; contains no variables, no loops, no control  s tatements  nor  
procedure  declarations; has no initialization instructions; is not word- 
at-a-time in nature; is hierarchically constructed f rom simpler com- 
ponents;  uses generally applicable housekeeping forms and operators 
[e.g., off, distl, distr, trans); is perfect ly general; yields ± w h e n e v e r  its 
argument  .is inappropriate  in any way; does not constrain the order  of 
evaluation unnecessarily [all applications of IP to row and column pairs 
can be done in parallel or in any order); and, using algebraic 
laws [see below I, can be t ransformed into more  "efficient" or into 
more "explanatory" programs [e.g., one that is recursively defined I. 
None of these propert ies  hold for the typical von N eu m an n  matr ix 
multiplication program. 

Although it has an unfamiliar and hence puzzling form, the program 
MM describes the essential operations of matrix multiplication without 
overdetermining the process or obscuring parts of it, as most  programs 
do; hence many  straightforward programs for the operat ion can be 
obtained from it by formal transformations.  It is an inherent ly  ineffi- 
cient program for von Neumann  computers  [with regard to the use of 
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space), but  efficient ones can be derived from it and realizations of 
FP systems can be imagined that could execute MM without  the prod- 
igal use of space it implies. Efficiency questions are beyond the scope 
of this paper; let me suggest only that since the language is 
so simple and does not dictate any binding of lambda-type variables 
to data, there may be bet ter  opportunit ies for the system to do some 
kind of "lazy" evaluation [9, 10] and to control data management  
more efficiently than is possible in lambda-calculus-based systems. 
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1 1 . 4  

Remarks 
about FP Systems 

11.4.1 F P  Sys tems  as P r o g r a m m i n g  Languages .  FP systems 
are so minimal that some readers may find it difficult to view them 
as programming languages. Viewed as such, a f u n c t i o n f i s  a program, 
an object x is the contents  of the store, and f:x is the contents of 
the store after program f is activated with x in the store. The set of 
definitions is the program library. The primitive functions and the 
functional forms provided by the system are the basic statements 
of a particular programming language. Thus, depending on the choice 
of primitive functions and functional forms, the FP framework provides 
for a large class of languages with various styles and capabilities. 
The algebra of programs associated with each of these depends on 
its particular set of functional forms. The primitive functions, functional 
forms, and programs given in this paper comprise an effort to develop 
just one of these possible styles. 

11.4.2 L i m i t a t i o n s  of  F P  Systems.  FP systems have a number  
of limitations. For example, a given FP system is a fixed language; 
it is not history sensitive: no program can alter the library of programs. 
It can treat input and output  only in the sense that x is an input and 
f:x is the output.  If the set of primitive functions and functional forms 
is weak, it may not be able to express every computable  function. 

An FP system cannot compute a program since function expressions 
are not objects. Nor can one define new functional  forms within an 
FP system. (Both of these limitations are removed in formal functional 
programming (FFP} systems in which objects "represent"  func t ions . )  
Thus no FP system can have a function, apply, such that 

apply : (x,y) -= x: y 

because, on the left, x is an object, and, on the right, x is a function. 
(Note that we have been careful to keep the set of function symbols 
and the set of objects distinct: thus 1 is a function symbol, and 1 is an 
object.) 
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The primary limitation of FP systems is that they are not history 
sensitive. Therefore they must be extended somehow before they can 
become practically useful. For discussion of such extensions, see the 
sections on FFP and AST systems (Sections 13 and 14). 

11.4.3 Expressive Power of FP Systems. Suppose two FP systems, 
FP1 and FP2, both have the same set of objects and the same set 
of primitive functions, but the set of functional forms of FP 1 properly 
includes that of FP2. Suppose also that both systems can express 
all computable functions on objects. Nevertheless, we can say that 
FP~ is more expressive than FP2, since every function expression 
in FP2 can be duplicated in FP~, but by using a functional form not 
belonging to FP2, FP~ can express some functions more directly and 
easily than FP2. 

I believe the above observation could be developed into a theory 
of the expressive power of languages in which a language A would 
be more expressive than language B under the following roughly stated 
conditions. First, form all possible functions of all types in A by 
applying all existing functions to objects and to each other in all 
possible ways until no new function of any type can be formed. (The 
set of objects is a type; the set of continuous functions [T ~ U] from 
type T to type U is a type. I f f , ~  [T---, U] and t E T, thenf t  in U can 
be formed by applying f to t.) Do the same in language B. Next, com- 
pare eachAype in A to the corresponding type in B. If, for every type, 
A's type includes B's corresponding type, then A is more expressive than 
B {or equally expressive I. If some type of A's functions is incomparable 
to B's, then A and B are not comparable in expressive power. 

11.4.4 Advantages of FP Systems. The main reason FP systems 
are considerably simpler than either conventional languages or lambda- 
calculus-based languages is that they use only the most elementary fixed 
naming system {naming a function in a definitionl with a simple fixed 
rule of substituting a function for its name. Thus they avoid the com- 
plexities both of the naming systems of conventional languages and 
of the substitution rules of the lambda calculus. FP systems permit the 
definition of different naming systems (see Sections 13.3.4 and 14.7} 
for various purposes. These need not be complex, since many programs 
can do without them completely. Most importantly, they treat names 
as functions that can be combined with other functions without special 
treatment. 

FP systems offer an escape from conventional word-at-a-time 
programming to a degree greater even than APL [12] {the most suc- 
cessful attacl~ on the problem to date within the von Neumann 
framework) because they provide a more powerful set of functional 
forms within a unified world of expressions. They offer the opportuni- 
ty to develop higher level techniques for thinking about, manipulating, 
and writing programs. 
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12 
The Algebra 
of Programs 

for FP Systems 

12.1 
Introduction 

The algebra of the programs described below is the work of an 
amateur in algebra, and I want to show that it is a game amateurs 
can profitably play and enjoy, a game that does not require a deep 
understanding of logic and mathematics. In spite of its simplicity, it 
can help one to understand and prove things about programs in a 
systematic, rather mechanical way. 

So far, proving a program correct requires knowledge of some 
moderately heavy topics in mathematics and logic: properties of 
complete partially ordered sets, continuous functions, least fixed 
points of functionals, the first-order predicate calculus, predicate 
transformers, weakest preconditions, to mention a few topics in a 
few approaches to proving programs correct. These topics have been 
very useful for professionals who make it their business to devise 
proof techniques; they have published a lot of beautiful work on 
this subject, starting with the work of McCarthy and Floyd, and, more 
recently, that of Burstall, Dijkstra, Manna and his associates, Milner, 
Morris, Reynolds, and many others. Much of this work is based on 
the foundations laid down by Dana Scott (denotational semantics) and 
C. A. R. Hoare (axiomatic semantics). But its theoretical level places it 
beyond the scope of most amateurs who work outside of this specialized 
field. 

If the average programmer is to prove his programs correct, he will 
need much simpler techniques than those the professionals have so far 
put forward. The algebra of programs below may be one starting point 
for such a proof discipline and, coupled with current work on algebraic 
manipulation, it may also help provide a basis for automating some of 
that discipline. 

One advantage of this algebra over other proof techniques is that 
the programmer can use his programming language as the language 
for deriving proofs, rather than having to state proofs in a separate 
logical system that merely talks about his programs. 

At the heart of the algebra of programs are laws and theorems that 
state that one function expression is the same as another. Thus the law 
[f,g] oh ~. [foh, gob] says that the construction o f f  and g (composed 
with h) is the same function as the construction of (fcomposed with 
h) and (g composed with h) no matter what the functions f, g, and h 
are. Such laws are easy to understand, easy to justify, and easy and 
powerful to use. However, we also wish to use such laws to solve 
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equations in which an "unknown" function appears on both sides 
of the equation. The problem is that if f satisfies some such equation, 
it will often happen that some extension f '  of f will also satisfy the 
same equation. Thus, to give a unique meaning to solutions of such 
equations, we shall require a foundation for the algebra of programs 
{which uses Scott's notion of least fixed points of continuous functionals) 
to assure us that solutions obtained by algebraic manipulation are 
indeed least, and hence unique, solutions. 

Our goal is to develop a foundation for the algebra of programs 
that disposes of the theoretical issues, so that a programmer can use 
simple algebraic laws and one or two theorems from the foundations 
to solve problems and create proofs in the same mechanical style 
we use to solve high-school algebra problems, and so that he can 
do so without knowing anything about least fixed points or predicate 
transformers. 

One particular foundational problem arises: given equations of the 
form 

f m  po~qo;  ... ; p i~q i ;  El(f) (1) 

where the pi's and qi's are functions not involving f and Ei(f) is a 
function expression involving f, the laws of the algebra will often permit 
the formal "extension" of this equation by one more "clause" by deriving 

Ei(f) "~Pi+l -'-~qi+l; Ei+l(f) (2) 

'which, by replacing El(f) in (1) by the right side of (2), yields 

f . ~ p o ~ q o ;  ... ; Pi+l-*qi+l; Ei+l(f). (3) 

This formal extension may go on without limit. One question the 
foundations must then answer is: when can the least f satisfying (1) 
be represented by the infinite expansion 

f ~ p o ~ q o ;  ... ; p n ~ q n ;  ... (4) 

in which the final clause involvingfhas been dropped, so that we now 
have a solution whose right side is free off 's? Such solutions are helpful 
in two ways: first, they give proofs of "termination" in the sense that 
(4) means that f :x  is defined if and only if there is an n such that, for 
every i less than n, p i : x  = F and pn:X = T and qn:X is defined. 
Second, (4) gives a case-by-case description of f that can often clarify 
its behavior. 

The foundations for the algebra given in a subsequent section 
are a modest start toward the goal stated above. For a limited class 
of equations its "linear expansion theorem" gives a useful answer 
as to when one can go from indefinitely extendable equations like (1) 
to infinite expansions like (4). For a larger class of equations, a more 
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general "expansion theorem" gives a less helpful answer to similar 
questions. Hopefully, more powerful theorems covering additional 
classes of equations can be found. But for the present, one need only 
know the conclusions of these two simple foundational theorems in 
order to follow the theorems and examples appearing in this section. 

The results of the foundations subsection are summarized in a 
separate, earlier subsection titled "expansion theorems," without 
reference to fixed point concepts. The foundations subsection itself 
is placed later where it can be skipped by readers who do not want 
to go into that subject. 
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12.2 
Laws of the 

Algebra of Programs 
In the algebra of programs for an FP system variables range over 

the set of functions of the system. The "operations" of the algebra 
are the functional forms of the system. Thus, for example, [f,g]oh is 
an expression of the algebra for the FP system described above, in which 
f, g, and h are variables denoting arbitrary functions of that system. And 

[f, gloh -~ [foh,goh] 

is a law of the algebra which says that, whatever functions one chooses 
for f, g, and h, the function on the left is the same as that on the right. 
Thus this algebraic law is merely a restatement of the following pro- 
position about any FP system that includes the functional forms [f,g] 
and f.og: 

PROPOSITION. For all [unctions f ,  g, and h and all objects x, ( [f,g] oh): 

x --= [foh,goh]:x.  

PROOF 

([f, gl oh):x = [f,g]:(h :x) 

= ~f:(h:x),  g : (h:x) )  

= ((foh):x, (goh):x) 

= [foh,  goh]:x 

by definition of composition 

by definition of construction 

by definition of composition 

by definition of construction. [] 

Some laws have a domain smaller than the domain of all objects. 
Thus 1 o [f,g] ~ fdoes  not hold for objects x such that g:x  = _L. We write 

defined og , , l o[f ,g]-=f  
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to indica te  tha t  the  l aw {or t heo rem)  on the  r ight  ho lds  w i th in  the  
d o m a i n  of objec ts  x for  w h i c h  d e f i n e d o g : x  = T, w h e r e  

D e f  de f ined  ~ T 

i .e. ,  d e f i n e d : x  ~ x =_J_~_l.; T. In genera l  w e  shall  wr i t e  a qualified 

functional equation: 

p--~--~ f ~- g 

to m e a n  that ,  for  a n y  objec t  x,  w h e n e v e r  p : x  = T, t h e n f : x  = g : x .  

O r d i n a r y  a lgebra  c o n c e r n s  i tself  w i th  two  opera t ions ,  add i t ion  and  
mult ip l icat ion;  it needs  f e w  laws.  The  a lgebra  of  p r o g r a m s  is c o n c e r n e d  
wi th  m o r e  ope ra t i ons  {functional  fo rms l  and  t he re fo re  needs  m o r e  
laws.  

Each  of the  fo l lowing  l aws  r equ i re s  a c o r r e s p o n d i n g  p ropos i t i on  
to va l ida te  it. T h e  in t e res t ed  r eade r  will  f ind m o s t  p roofs  of  such  
p ropos i t i ons  ea sy  {two are  g iven  below) .  W e  first  de f ine  the  usua l  
o rde r ing  on func t ions  and  e q u i v a l e n c e  in t e r m s  of this order ing:  

Definit ion.  f < g  iff for  all ob jec ts  x, e i ther  f : x  = _1_, or f : x  = g : x .  

Definit ion.  f ~- g iff f < g and  g~_f. 

It is e a sy  to ve r i fy  tha t  < is a par t ia l  o rder ing ,  tha t  f < g  m e a n s  g is 
an  ex tens ion  of f ,  and  tha t  f ~ g iff f :  x = g :x for  all objec ts  x. We  n o w  
give a list of  a lgebra ic  l aws  o rgan ized  b y  the  t w o  p r inc ipa l  func t iona l  
f o r m s  invo lved .  

C o m p o s i t i o n  a n d  c o n s t r u c t i o n  

1.1 

1.2 

1.3 

1.4 

1 .5  

1.5.1 

1 .6  

[`fl . . . .  , fn] og ~ [f, og, ... , fnOg] 

~ f o [ g ,  . . . . .  gn] -~ [ fog ,  . . . . .  fOgn] 

/ f ° [ g l  . . . . .  gn] ~ f ° [ g , ,  / f o [ g  2 . . . . .  gn]] w h e n n > 2  

f o [ g , , f o [ g  2 . . . . .  f ° [ g n - l ,  gn]'--]] 
/ fo[g] ~ g 

f o  [.~, g] ~ (bu f x) og 

• lo[f ,  . . . . .  fn]_<f, 

s ° [ f '  . . . . .  fs . . . . .  fn] --< fs for  a n y  se lec to r  s, s<_n 

d e f i n e d o ~  (for all i ~ s ,  l < i < n ) ~  s ° [ f ,  . . . . .  fn]  ~ fs  

[f,  °1, -.. , fn°n]°[g ,  . . . . .  gn] ------ [,flog, . . . . .  fnog, ]  

t l ° [ f , ]  < ¢ and  tlO[fl . . . .  , fn] ~ [f2 . . . . .  fn] for  n > 2 

de f ined  ofl ~ ~ tl o [f,  ] ~ 

and  t lo[f ,  . . . . .  f , ]  ~ [f2 . . . . .  f , ]  for  n > 2  
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1.7 

1.8 

and  so 

1.9 

1.10 

1.11 

I I  

II.1 

II .2 

II .3 

II.3.1 

I I I  

III .1 

I I I . l . 1  

III .2  

III .3  

I I I .4  

III .5  

I V  

IV.1 

d i s t l ° t f ,  [g, . . . . .  gnll ~ [ [ f ig , ]  . . . . .  [ f ig , l ]  

de f ined  o f ~  ---~ dist lo [f ,  61 --- 6 

T h e  ana logous  law holds  for  distr. 

apnd lo [ f ,  [g~ . . . . .  g.]] --- [f,g~ . . . . .  gn] 

nul l  °g ---~ ~ apndlo [f, g] -= [f] 

on for  apndr ,  reverse ,  rotl, etc. 

[ . . . .  i . . . .  ] - - - i  

apndlo [ fog ,  a fob] ~ olfoapndlo  [g,h] 

pa i r  & n o t o n u l l ° l  ' , apnd lo [ [ l o l , 2 ] ,  d i s t ro [ t l ° l ,2 ] ] - - -  distr  

w h e r e  f & g --- ando If, g] ; pa i r  --- a t o m  ~ #;  eq ° [ length ,2]  

C o m p o s i t i o n  a n d  c o n d i t i o n  (right assoc ia ted  p a r e n t h e s e s  
omitted} {Law II .2 is no t ed  in M a n n a  et al. [16, p. 493].} 

(p---if; g)oh ~ poh- .  foh; goh 

h o ( p ~  f; g) ~ p---, hof; hog 

oro[q ,no toq]  , , ando[p,q]~ f; ando[p,notoq]-~g; h 

= p- -*(q~f ;  g);  h 

p ~ ( p ~  f; g);  h ~- p ~  f; h 

Composit ion and miscel laneous 

o f < ~  

de f ined  of-~-~ 2 o f  -= 

i o f  = - f o i  - = i  

fo id --- id of  _-- f 

pa i r  , , lodistr  ~- [1°1,2] a lso:  pa i r  , . lo t l -=  2 etc. 

oL(fog) ~- olfoag 

nul log  ~ ~ a f o g  -= 

Condition and construction 

[f ,  . . . . .  (p -~ g; h) . . . . .  fn] 

~ P - " [ f l  . . . . .  g . . . . .  fn l ;  [ f '  . . . . .  h, ... , fn] 
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IV.I.1 [f~ . . . . .  ( P ,  ~ g ,  . . . .  ; P n  ~ g n ;  h)  . . . . .  fro] 

~ P , - ' [ f l  . . . . .  g ,  . . . . .  f m ] ;  

• .. ; P n ~ [ f l ,  " .  , g n , - "  , f m ] ;  [ f ,  . . . . .  h . . . . .  f m ]  

This concludes the present  list of algebraic laws; it is by no means 
exhaustive; there are many  others. 

P r o o f  o f  t w o  l a w s  

We give the proofs of validating propositions for laws I. 10 and I. 11, 
which are slightly more involved than most of the others. 

PROPOSITION 1 

apndlo [ f o g, c~f o h] = a f  ° apndlo [g, h] 

PROOF. We show that, for every  object x, both of the above functions 
yield the same result. 

Case 1. h:x  is nei ther  a sequence nor  ¢. Then  both sides yield ± 

when  applied to x. 

Case 2. h:x  = ok. Then 
apndlo[fog,  c~foh]: x = apndl: (fog:x,c~) = ( f:(g:x))  

a foapnd lo[g ,h] :  x = a f o a p n d l :  (g:x, O) = af:(g:x} 

= (f: (g:x))  

Case 3. h:x = ( Y l  . . . . .  Yn). Then 

apndl ° [ fog ,  c~foh]: x = apndl: ( f o g : x ,  ot f:(yl  . . . . .  Yn)) 

= 0C:(g:x), f : Y , ,  . . . ,  f:Yn) 

oLfoapndlo[g,h]: x = a f o a p n d l :  (g:x,  @1 . . . . .  Yn)) 

= a f : ( g : x ,  Y l  . . . . .  Yn) 

= ( f : (g :x ) ,  f :Y l  . . . . .  f:Yn} [] 

PROPOSITION 2 

Pair & o otono l--~--~ apndlo[[12, 2], distro[tlol, 2]]] ~- distr 

where  f & g is the function: ando [f, g], and f2  ~ f o f .  

PROOF. We show that both sides produce  the same result when  
applied to any pair (x,y) ,  where  x ¢ ¢,  as per the stated qualification. 

94 JOHN BACKUS 



Case 1. x is an atom or ±. Then distr :(x,y)  = _k, since x ~e ¢. The 
left side also yields ± when  applied to (x,y),  since tlol: (x,y) = .j_ and 

all functions are _l-preserving. 

Case 2. x = (xl, ... ,Xn). Then 

apndlo [[12, 2], distr o [tlo 1,211 : (x, y) 

= apndl : ( ( l :x ,  y), distr: (tl:x,y)) 

= apndl:((x, ,y) ,  ¢) = ((x~,y)) if tl:x = 4~ 

= apndl:((x~,y), ((x2,y) . . . . .  (Xn,Y))) if t l :x • q~ 

= ((x,,y) . . . . .  (Xn,y)) 

= distr:(x,y). [] 
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1 2 . 3  

E x a m p l e :  E q u i v a l e n c e  o f  T w o  

M a t r i x  M u l t i p l i c a t i o n  P r o g r a m s  

We have seen earlier the matrix multiplication program: 

Def  MM = txaIpoadistro[1, trans 02]. 

We shall now show that its initial segment, M M ' ,  where  

D e f  MM'  ~ txcdpoadistlodistr 

can be defined recursively. (MM' "multiplies" a pair of matrices after 
the second matrix has been transposed. Note that M M ' ,  unlike MM, 
gives ± for all arguments that are not pairs.) That is, we shall show that 
MM'  satisfies the following equation which recursively defines the 
same function (on pairs): 

f------nullol-*~; apndlo[cdpodis t lo[ lol ,  2], fo[ t lo l ,  2]]. 

Our  proof will take the form of showing that the following function, R, 

D e f  R-~  n u l l o l ~ ;  apndlo[aIpodis t lo[ lo l ,  2], MM'o[t lol ,  2]] 

is, for all pairs (x,y), the same function as MM'. R "multiplies" two 
matrices, when  the first has more than zero rows, by computing the 
first row of the "product"  (with o~IP o distl o [1o 1, 2]) and adjoining it to 
the "product" of the tail of the first matrix and the second matrix. Thus 
the theorem we want is 

pair ~ MM'  ~ R, 

from which the following is immediate: 

MM -= MM'o[1, transo2] --- R o l l ,  t ranso2];  

where  

Def  pair ~ a t o m - I F ;  eq o[length; 2]. 

A Functional Style and Its Algebra of Programs 95 



THEOREM: pair  ~ ~ M M '  ~ R 

where 

D e f  M M '  ~ aaIpoc~dis t lodis t r  

D e f  R ~ n u l l o l ~ ;  apndlo[o~Ipodistlo[12, 2], M M ' o [ t l o l ,  2]] 

PROOF 

Case I. pair & n u l l o l  , , M M ' - = R .  

p a i r & n u l l o l  ~ R-=q~ 

p a i r & n u l l o l  ~ M M ' ~ -  ~ 

since d i s t r : < q ~ , x >  = 4~ 

and  a f : ~  = q5 

by definit ion of R 

by definit ion of distr 

by  definit ion of Apply to all. 

And so: o~alPoo~distlodistr:(~,x) = ¢. 

Thus  pair  & n u l l o l  , , M M '  ~ R .  

Case 2. pair  & no tonu l lo l  * , M M '  ~- R. 

pair  & n o t o n u l l o l  , , R - = R '  by d e f o f R a n d R '  (1) 

where 

D e f  R ' ~  apndlo[o~Ipodistlo[12, 2], MMo[ t lo l ,  2]]. 

We note that  

R '  --~ apndlo[ fog, afoh] 

where  

f_-- odp odistl 

g -= [12, 2] 

h ~ distro [tl o 1, 2] 

a f - ~  a(cHpodis t l )  ~ o~alpoadis t l  (by III.4). (2) 

Thus, by 1.10, 

R' -~ oLfoapndlo[g,h]. (3) 

Now apndlo[g,h] -= apndlo [[12, 2], distr o[tlol,  2]], thus, by 1.11, 

pair  & n o t o n u l l o l  , , apndo[g,h] =- distr. (4) 

And so we have, by (1), (2), (3), and (4), 

pair  & n o t o n u l l o l  , ~ R - ~ R '  

~- o~fodistr ~ omdP oo~distl odistr --- M M  '. 

Case 1 and Case 2 together  prove  the theorem.  [] 
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1 2 . 4  

E x p a n s i o n  T h e o r e m s  
In the following subsections we shall be "solving" some simple equa- 

tions (where by a "solution" we shall mean  the "least" function which 
satisfies an equation). To do so we shall need  the following notions and 
results drawn from the later subsection on foundations of the algebra, 
where  their proofs appear. 

12.4.1 E x p a n s i o n .  Suppose we have an equation of the form 

f E  n ( f )  (El)  

where  E( f )  is an expression involving f .  Suppose fur ther  that there is 
an infinite sequence of functions fi for i = 0, 1, 2 . . . . .  each having the 
following form: 

fo-~i  
fi+l ~ -P0~q0 ;  ... ; Pi-~qi;  _T_ (E2) 

where  the pi 's  and qi's are particular functions, so that E has the 
property:  

E(fi)~J~+l  for i = 0, 1, 2 . . . . .  (E3) 

Then  we say that E is expansive and has the fi 's  as approximating 
functions. 

If E is expansive and has approximating functions as in (E2), and 
if f is the solution of (E 1), then f c a n  be written as the infinite expansion 

f -= po~qo;  ... ; p n ~ q n ;  ... (E4) 

meaning that, for any x, f:x -~ ± iff there is an n _> 0 such that 
(a) pi:X = F for all i < n, and (b) Pn :x = T, and (c) qn :x ~ ±. When  
f :x  -~ ±, then f:x = qn:x for this n. IThe foregoing is a consequence 
of the "expansion theorem.") 

12.4.2 L i n e a r  E x p a n s i o n .  A more helpful tool for solving some 
equations applies when,  for any function h, 

E(h) ~ p o ~ q o ;  El(h) (LE1) 

and there exist Pi and qi such that 

E l ( p i ~ q i ;  h)~Pi+l~q i+l ;  El(h)  for i = 0, 1, 2 . . . .  (LE2) 

and 

E 1 ( i )  ~ i .  (LE3) 

Under  the above conditions E is said to be linearly expansive. If so, and 
f is the solution of 

f--- E( f )  (LE4) 

then E is expansive and f c a n  again be wri t ten as the infinite expansion 

f ~ p o ~ q o ;  ... ; p n ~ q n ;  ... (LES) 

using the pi's and qi's generated by (LE1) and (LE2). 
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Although the pi's and qi's of (E4) or (LE5) are not unique for a 
given function, it may be possible to find additional constraints which 
would make them so, in which case the expansion (LES) would 
comprise a canonical form for a function. Even without uniqueness 
these expansions often permit one to prove the equivalence of two 
different function expressions, and they often clarify a function's 
behavior. 

1 2 . 5  
A R e c u r s i o n  T h e o r e m  

Using three of the above laws and linear expansion, one can prove 
the following theorem of moderate generality that gives a clarifying 
expansion for many recursively defined functions. 

RECURSION THEOREM: Let  f be a solution o f  

f ~ p  ~ g ; Q ( f )  

where 

(1) 

Q(k) --- h o [i ,koj] for any function k (2) 

and p ,  g, h, i, j are any given functions; then 

f ~ p  ~ g, p o j ~ Q ( g ) ;  ... ; p o j n ~ Q n ( g ) ;  ... (3) 

( where Qn(g) is h ° [i, Qn- l(g) o j] ,  and jn  is j o j n -  l for  n > 2) and 

Qn(g) ~ / h  o [i, i ° j  . . . . .  i o jn -1 ,  gojn]. (4) 

PROOF. 
qn, and k be any functions. Then 

Q(Pn ~ qn; k) ~ h°[i ,  (Pn --~ qn; k)°J] 
h ° [ i , ( p n ° j  ~ qn°j; k°j)] 
h° (pnoj  ~ [i, qn°J]; [i, k°j]) 
P n°J ~ ho[i ,  q n ° j ] ;  ho[i ,  koj] 

Pn°J ~ Q(qn); Q(k) 

Thus i f po  ~ p  and q0 ~ g, then (5) gives pl -=poj  and q~ 
in general gives the following functions satisfying (LE2) 

We verify that p ~ g; Q(f)  is linearly expansive. Let Pn, 

by (2) 
by II.1 
by IV.1 
by II.2 
by (2). 

Pn '~ pojn  and qn ~ Qn(g). 

Finally, 

(5) 

Q(g) and 

(6) 

Q ( i )  ~ ho[i,  io j ]  

h o [i, i ]  by III. 1.1 
h o i  by 1.9 

--- i by III.1.1. 
(7) 
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T h u s  (5) and  (6) ver i fy  (LE2) a nd  (7) verifies (LE3), wi th  E 1 ~ Q.  If  

we  let E ( f )  ~ p  ~ g; Q ( f ) ,  t hen  we  have (LE1);  thus  E is l inear ly  

expansive. S i n c e f  is a solut ion o f f ~  E ( f ) ,  conclus ion  (3) follows f rom 

(6) and  (LES). N o w  

! 9 7 7  
' l u r i n g  
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Qn(g) ~ ho[i, Q n - l ( g ) o j ]  

= ho[i, ho[ioj . . . . .  ho[ io jn-J ,  gojn] ... 11 

/h°[ i ,  i° j  . . . . .  i o j n - l ,  gojn] 

by  1.1, r epea ted ly  

by  1.3. (8) 

Result  (8) is the second  conc lus ion  (4). 

12.5.1 Example: Correctness Proof  of a Recursice Factorial 
Function. Let f be a solution of 

f - =  eqO ~ ] ;  x o [ i d , f o s ]  

w h e r e  

Def s -=  - o [ i d ,  ]]  ( subtrac t  1). 

T h e n  f satisfies the hypothes i s  of the recurs ion  t h e o r e m  with  p --- eq0, 

g --- 1, h ~- x,  i -= id, and  j -= s. There fo re  

f ~  eq0 ~ 1; ... ; eq0 °sn ~ Q n ( i ) ;  ... 

and  

Q n ( ] )  ~ / x  o[id, idos . . . . .  idos  n - l ,  losW]. 

Now idos  k --- s k by III.2 and  eq0 os n ~-~ 1 °sn ~ 1 by  III.1, since 

e q 0 ° s n : x  implies def inedosn:x;  and  also e q 0 ° s n : x  --- eq0:  (x - n) --- 

x = n .  Thus  if eq0osn :x  = T, then  x = n and  

Qn(1): n = n X (n -- 1) x ... X ( n  -- (n -- 1)) X ( l : ( n  - n)) = n!.  

Using these results  for l o s  n, eq0os  n, and  Q n ( ] )  in the p rev ious  

expans ion  for  f ,  we  obta in  

f : x ~ x = O + l ;  ... ; x = n ~ n  x (n - 1) x ... x 1 x 1; . . . .  

Thus  we  have p roved  that  f t e rmina t e s  on prec ise ly  the set of non-  
negat ive  integers  and  that  it is the factorial  func t ion  the reon .  
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1 2 . 6  

A n  I t e r a t i o n  T h e o r e m  

This is really a corollary of the recursion theorem.  It gives a s imple 
expansion for m a n y  iterative programs.  

ITERATION THEOREM. Let  f be the solution [i.e., the least solution} o f  

f ~  p ~ g; h o f o k  

then 

f -= p ~ g; p o k  ~ hogok;  ... ; p ° k n  ~ hnog°kn;  . . . .  

PROOF. L e t h ' - - - h o 2 ,  i ' - - - i d ,  j ' ~ k ,  then  

f -= p ~ g; h ' o [ i ' ,  f o j  '] 

since h o 2 o [ i d , f o k ]  --- h o f  ok by 1.5 {id is def ined except for ±,  and 
the equat ion holds for _L). Thus  the recurs ion theo rem gives 

f __- p ~ g; ... ; p o k  n ~ Qn(g); ... 

where  

Qn(g) =_ ho2 °[id, Qn-~(g)ok] 

h ° Q n - ~ ( g ) ° k - =  h n ° g ° k  n b y I . 5 .  [] 

12.6.1 E x a m p l e :  C o r r e c t n e s s  P r o o f  fo r  a n  I t e r a t i v e  F a c t o r i a l  
F u n c t i o n .  Let f be the solution of 

f - - - e q 0 o l  ~ 2 ; f o [ s o l ,  ×] 

where  D e f  s --- - o [id, 1 ] {substract 1). We want  to prove that  f :  <x, 1} 

= x! i f fx  is a nonnegat ive  integer. L e t p  ~ eq0o l ,  g --- 2, h --- id, k -= 

[sol ,  ×]. Then 

f _= p .--~ g; h ° f o k  

and so 

f ---p ~ g; ... ; p o k  ~ gokn, ... (1) 

by the i teration theorem,  since h n --- id. We want  to show that 

pair  ~ k n ~ [an, bn] (2) 
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holds  for eve ry  n > 1, w h e r e  

a n -~ Snol  

b n ~ / × ° [ s n - I  °1 . . . . .  sol, 1, 2]. 

1 9 7 7  
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Award 

I,t '¢ ' lurc 
(3) 

(4) 

N o w  (2) holds for n ~  1 by definit ion of k. We assume it holds for some 

n >_ 1 and  prove  it t hen  holds  for  n + 1. N o w  

pair  ~ k n+l ~ k o k  n -= [sol, X]O[an, b n ]  (5) 

s ince (2) holds  for  n. And  so 

pair  ' ' k n + l ~ [ S ° a n ,  x ° [ a n ,  bn]] b y l . l a n d l . 5 .  (6) 

To pass  f rom (5) to (6) we  m u s t  check  that  w h e n e v e r  an or  bn yie ld  

_L in (5), so will  the r ight side of  (6). N o w  

S ° a n  ~ s n+l °1 ~- an+ 1 (7) 

× °[an, bn] ~ / x o[s nol . . . . .  sol ,  1, 2] 

--= bn+l by  1.3. (8) 

C o m b i n i n g  (6), (7), and  [8) gives 

pair  , ,k  n+l ~ [an+l ,  bn+l] .  (9)  

Thus  (2) holds  for  n = 1 and  holds  for n + 1 w h e n e v e r  it holds  for  n; 

therefore,  by  induction,  it holds  for every  n > 1. N o w  (2) gives, for pairs: 

de f ined°k  n ' ' p ° k n  ~ eq0o lo [an ,  bn] 

eq0oan  ~ eq0os  n° l  (10) 

de f ined°k  n ' ' g ° k n  ~- 2 ° [an, bn] 

/ × ° [ s n - l ° l  . . . .  , s ° l ,  1, 2] (11)  

[both use 1.5). N o w  (1) tells us that f :  (x, 1) is def ined  iff there  is an  n 

such  t h a t p o k i : ( x , 1 )  = F f o r  all i < n, a n d p o k n : ( x , 1 )  = T, tha t  is, by  

(10), eq0 os n :x = T, i.e., x = n; and  g o k n : ( x ,  1) is defined, in w h i c h  case, 

by  (11), 

f : ( x , 1 )  = / × : ( 1 , 2  . . . . .  x - l , x ,  1 ) = n !  []  

which ,  is w h a t  we  set out  to prove.  
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12.6 .2  E x a m p l e :  P r o o f  o f  E q u i v a l e n c e  o f  Two  I t e r a t i v e  P ro -  
g r a m s .  In  this example  we  w a n t  to prove  that  two  i terat ively def ined  
programs,  f and  g, are the same  funct ion.  Let f be the solut ion of  

f------pol~2; h o f o [ k o l ,  21. 

Let g be the  solut ion of  

g - = p o l ~ 2 ; g o [ k o l ,  ho2] .  

Then,  by  the i terat ion t h e o r e m :  

f ~ p o ~ q o ;  ... ; p n ~ q n ;  ... 

g - - -p 'o-~q 'o;  ... ; p ' n ~ q ' n ;  ... 

w h e r e  (letting r ° ------ id for  a ny  r), for  n = 0, 1 . . . .  

Pn = P ° l ° [  k° l ,  2] n m P ° l ° [ k n ° m ,  2] 

qn " hn °2 o[kol ,  2] n ~ hnoEo[kno l ,  2] 

P ' n - = P ° l , h ° [ k ° l ,  2] n - = p o l o [ k n o l ,  hno2] 

q 'n  ~ 2° [  k°l,  h°2]  n " 2 ° [ k n ° l ,  hn°2]  

Now, f r o m  the  above, using 1.5, 

de f inedo2  , , Pn ~ P  °kn°l  

d e f i n e d ° h n ° 2  ~ ' P ' n - - - P  °kn°l  

de f i ned°kn° l  ' ' qn --- q ' n ~  h n ° 2 .  

T h u s  

de f ined°h  n°2 ' ' de f inedo2  -= T 

defined°hn °2 ' ' Pn ~- P 'n  

and  

f = p 0 ~ q 0 ;  ... ; p n ~ h n ° 2 ;  ... 

g = p ' 0 - ~ q ' 0 ;  ... ; p ' n ~ h n ° 2 ;  ... 

(1) 

(2) 

(3) 

(4) 

by  1.5.1 (5) 

by  1.5.1 (6) 

by  1.5.1 (7) 

by  1.5.1 (8) 

(9) 

(10) 

(11)- 

(12) 

(13) 

(14) 

(15) 

since Pn and  p ' n  provide  the qualif icat ion needed  for qn = q 'n  = hn °2. 
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Now suppose there is an x such that f ° x  ~ g:x .  Then there is 
an n such that pi:x = p ' i : x  = F f o r  i < n, and pn:X # p ' n : x .  From 
(12) and (13) this can only happen when  h n o2:x = ±. But since h 
is ±-preserving, h m o2:x = ± for all m > n .  Hence f : x = g : x = ±  by 
(14) and (15). This contradicts the assumption that there is an x for 
which f :x  ~ g:x.  Hence f=-  g. 

This example Iby J. H. Morris, Jr. I is treated more elegantly in [16] 
on p. 498. However, some may find that the above treatment  is more 
constructive, leads one more mechanically to the key questions, and 
provides more insight into the behavior of the two functions. 

12.7 
Nonl inear  Equations 

The earlier examples have concerned "linear" equations lin which 
the "unknown"  function does not have an argument involving itself). 
The question of the existence of simple expansions that "solve" 
"quadratic" and higher order equations remains open. 

The earlier examples concerned solutions of f=- E(f) ,  where E is 
linearly expansive. The following example involves an E(f)  that is 
quadratic and expansive [but not linearly expansive). 

12.7.1 Example :  p roof  of  i d e m p o t e n c y  1[16], p. 497). Let f be 
the solution of 

f~-  E(f)  ~ p a i d ;  f2 °h. (1) 

We wish to prove that f ~  f t .  We verify that E is expansive {Section 
12.4.1} with the following approximating functions: 

f0 -= i (2a) 

fn = - p A i d ;  ... ; p ° h n - l ~ h n - 1 ; _ L  for n > 0. (2b) 

First we note that p-~--*fn ~ id and so 

P °hi-~--~fn °hi ~ hi. (3) 

Now E(f)  -= p--,id; i 2 o h  -=f~ (4) 

and 

E(fn ) 
~-p~id;fno(p~id; ... ;p°hn-~hn-l;±)°h 
--= p a i d ;  fn o(p o h ~ h ;  ... ; p ohn --+h n ; i  °h) 

=- p a i d ;  p ° h ~ f n  °h; ... ; p ° h n ~ f n  °hn, fn o± 

--~p~id;  p ° h ~ h ;  ... ; p °hn-*hn; ± by (3) 

~ f n + l  (5) 
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Thus E is expansive by (4) and (5); so by {2) and Section 12.4.1 (E4) 

f ~ p ~ i d ;  ... ; p ° h n ~ h  n . . . . .  (6) 

But (6)i by the iteration theorem, gives 

f -~  p o i d ;  f o h .  (7) 

Now, i f p : x  = T, t h e n f : x  = x = f Z : x ,  by (1). I f p : x  = F, then 

f : x  = f 2 o h : x  by (1) 

= f :  ( f o h  :x) = f :  ( f :x)  by (7) 

= f Z : x .  

[] 

I f p : x  is neither Tnor  F, then f : x  = ± = f 2 : x .  Thus f ~ f 2 .  

1 2 . 8  

F o u n d a t i o n s  

for the 
Algebra of Programs 

Our purpose in this section is to establish the validity of the results 
stated in Section 12.4. Subsequent sections do not depend on this 
one, hence it can be skipped by readers who wish to do so. We use 
the standard concepts and results from [16], but the notation used 
for objects and functions, etc., will be that of this paper. 

We take as the domain [and range I for all functions the set O of 
objects [which includes ±1 of a given FP system. We take F to be 
the set of functions, and F to be the set of functional forms of that 
FP system. We write E ( f )  for any function expression involving 
functional forms, primitive and defined functions, and the function 
symbol f;  and we regard E as a functional that maps a function f 
into the corresponding function E( f ) .  We assume that all f E F are 
±-preserving and that all functional forms in F correspond to con- 
t inuous functionals in every variable [e.g., [f, g] is continuous in both 
f a n d  g). {All primitive functions of the FP system given earlier are ±- 
preserving, and all its functional forms are continuous.I 

Definitions. Let E( f )  be a function expression. Let 

f0 ~ i  

f i + l ~ - - P o ~ q o ;  " .  ;Pi -*qi ;  i for i = 0, 1 . . . .  

where pi, qi ~ E Let E have the property that 

E ( f ~ ) ~ f ~ + l  f o r i  = 0, 1 . . . . .  
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Then E is said to be expansive with the approximating functions f,. We 
write 

! 9 7 7  
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I~t, l ' l  i i  r l ,  

f--=po-~qo; ... ; p n - + q n ;  . . .  

to mean that f ~-limi {fi}, where  the f,  have the form above. We call 
the right side an infinite expansion of f. We take f : x  to be defined 
iff there is an n > 0 such that (a) Pi :x = F for all i < n, and (b) Pn :x 
= T, and (c) qn:X is defined, in which case f : x  = qn:X. 

EXPANSION THEOREM. Let E ( f )  be expansive with approximating 
functions as above. Let f be the least function satisfying 

f -=  E ( f ) .  

Then 

f - - = p o ~ q o ;  . . .  ; p n - - ~ q n ;  . . . .  

PROOF. Since E is the composit ion of cont inuous functionals (from 
F} involving only monotonic  functions {±-preserving functions from 
F) as constant terms, E is cont inuous [16, p. 493]. Therefore  its least 
fixed p o i n t f i s  limi {El( i )}  ~ limi{fl} [16, p. 494], which by definition 
is the above infinite expansion for f. [] 

Definition. Let E ( f )  be a function expression satisfying the 

E ( h ) - ~ p o ~ q o ;  El(h) for a l l h  ~ F (LE1) 

where  Pi ~ F and qi ~ F exist such that 

E{ (p i~ q i ;  h) ~ P i + l  ~ q i + l ;  El(h) 
for a l lh  E F a n d i  = O, 1 . . . .  

and 

(LE2) 

E , ( i )  ~ i .  (LE3) 

Then  E is said to be linearly expansive with respect to these pi 's  and 

qi's. 

LINEAR EXPANSION THEOREM. Let E be linearly expansive with 
respect to Pi and qi, i = O, 1 . . . . .  Then E is expansive with approximating 
functions 

fo -=i (I) 

~+I --=Po~qo; ... ; P i ~ q i ;  i .  (2) 
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PROOF. We want to show that E(f~) ---fi+l for any i>0 .  Now 

E(fo) ~ p o ~ q o ;  Ei(__L) ~Po~qo;--L~f~ by (LE1)(LE3)(1). (3) 

Let i > 0 be fixed and let 

~ po~qo;  wl (4a) 
wl --= pl ~ q l ;  W2 (4b) 
etc. 

Wi-1 ~- P i -1 - - ' ~q i -1 ;  -J-" (4-) 

Then, for this i > 0 

E(f i ) -=p0~qo;  El(A) by (LE1) 
Ei(3]) ~p~--'q~; E~(w~) by (LE2) and (4a) 

E~(w~)~p2~q2;  El(w2) by (LE2) and (4b) 
etc. 

El(wi-1) mPi-*qi;  El(Z) by (LE2)and (4-) 
-= pi ~qi ;  5_ by (LE3). 

Combining the above gives 

E(j]) ~J ]+ l  for arbitrary i > 0 ,  by (2). (5) 

By (3), (5) also holds for i = 0; thus it holds for all i ~ 0. Therefore 
E is expansive and has the required approximating functions. [] 

COROLLARY. I f  E is linearly expansive with respect to Pi and qi, 
i = O, 1 . . . . .  and f is the least function satisfying 

f ~  E(f) (LE4) 

then 

f ~ P o ~ q o ;  ... ; P n ~ q n ;  . . . .  (LES) 

12 .9  
T h e  A l g e b r a  o f  P r o g r a m s  

f o r  t h e  L a m b d a  C a l c u l u s  

a n d  f o r  C o m b i n a t o r s  

Because Church's lambda calculus [5] and the system of combinators 
developed by Sch6nfinkel and Curry [6] are the primary mathematical 
systems for representing the notion of application of functions, and 
because they are more powerful than FP systems, it is natural to 
enquire what an algebra of programs based on those systems would 
look like. 
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The lambda calculus and combinator equivalents of FP composi- 
tion, fog,  are 

1 9 7 7  
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where B is a simple combinator defined by Curry There is no direct 
equivalent for the FP object (x,yl in the Church or Curry systems 
proper; however, following Landin [14] and Burge [4], one can use the 
primitive functions prefix, head, tail, null, and atomic to introduce the 
notion of list structures that correspond to FP sequences. Then, using 
FP notation for lists, the lambda calculus equivalent for construction 
is kfgx. (fx, gxl. A combinatory equivalent is an expression involving 
prefix, the null list, and two or more basic combinators. It is so complex 
that I shall not attempt to give it. 

If one uses the lambda calculus or combinatory expressions for the 
functional forms fog  and [f, g] to express the law I. 1 in the FP algebra, 
[f,g] oh _-- [fob,gob], the result is an expression so complex that the 
sense of the law is obscured. The only way to make that sense clear 
in either system is to name the two functionals: composition =- B, and 
construction ~ A, so that Bfg ~ f o g ,  and Afg =- [f,g]. Then 1.1 be- 
comes 

B(Afg)h ~- A(Bfh) (Bgh) 

which is still not as perspicuous as the FP law. 
The point of the above is that if one wishes to state clear laws like 

those of the FP algebra in either Church's or Curry's system, one 
finds it necessary to select certain functionals {e.g., composition and 
construction} as the basic operations of the algebra and to either give 
them short names or, preferably, represent them by some special 
notation as in FP. If one does this and provides primitives, objects, lists, 
etc., the result is an FP-like system in which the usual lambda expres- 
sions or combinators do not appear. Even then these Church or Curry 
versions of FP systems, being less restricted, have some problems 
that FP systems do not have: 

(a) The Church and Curry versions accommodate functions of 
many types and can define functions that do not exist in FP systems. 
Thus, Bf  is a function that has no counterpart in FP systems. This 
added power carries with it problems of type compatibility. For example, 
in fog,  is the range of g included in the domain of f ?  In FP systems 
all functions have the same domain and range. 

(b) The semantics of Church's lambda calculus depends on substi- 
tution rules that are simply stated but whose implications are very 
difficult to fully comprehend. The true complexity of these rules is 
not widely recognized but is evidenced by the succession of able 
logicians who have published "proofs" of the Church-Rosser theorem 
that failed to account for one or another of these complexities. (The 
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Church-Rosser theorem, or Scott's proof of the existence of a model 
[22], is required to show that the lambda calculus has a consistent 
semantics. I The definition of pure Lisp contained a related error for 
a considerable period {the "funarg" probleml. Analogous problems 
attach to Curry's system as well. 

In contrast, the formal {FFPI version of FP systems {described in 
the next section) has no variables and only an elementary substitution 
rule la function for its name), and it can be shown to have a consistent 
semantics by a relatively simple fixed-point argument along the lines 
developed by Dana Scott and by Manna et al. [16]. For such a proof 
see McJones [18]. 

12.10 
Remarks  

The algebra of programs oulined above needs much work to provide 
expansions for larger classes or equations and to extend its laws and 
theorems beyond the elementary ones given here. It would be in- 
teresting to explore the algebra for an FP-like system whose sequence 
constructor is not ±-preserving {law 1.5 is strengthened, but IV. 1 is lost). 
Other interesting problems are: (a) Find rules that make expansions 
unique, giving canonical forms for functions; (b) find algorithms for 
expanding and analyzing the behavior of functions for various classes 
of arguments; and (c) explore ways of using the laws and theorems 
of the algebra as the basic rules either of a formal, preexecution "lazy 
evaluation" scheme [9, 10], or of one which operates during execution. 
Such schemes would, for example, make use of the law lo If, g] < f t o  
avoid evaluating g:x. 

13 
Formal Systems for 

Functional  Programming 
{FFP Systems 1 

13.1 
Introduction 

As we have seen, an FP system has a set of functions that depends 
on its set of primitive functions, its set of functional forms, and its 
set of definitions. In particular, its set of functional forms is fixed 
once and for all, and this set determines the power of the system 
in a major way. For example, if its set of functional forms is empty, 
then its entire set of functions is just the set of primitive functions. 
In FFP systems one can create new functional forms. Functional 
forms are represented by object sequences; the first element of a 
sequence determines which form it represents, while the remaining 
elements are the parameters of the form. 
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The ability to define new funct ional  forms in FFP sys tems  is 
one consequence  of the principal  difference be tween  them and FP 
systems: in FFP sys tems objects are used to " represen t"  functions 
in a systematic way. Otherwise FFP systems mirror  FP systems closely. 
They  are similar to, but  s impler  than, the Reduction (Red) languages 
of an earlier paper  [2]. 

We shall first give the s imple syntax of FFP systems, then  discuss 
their  semant ics  informally, giving examples,  and finally give their  
formal  semantics.  

I 9 7 7  
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1 3 . 2  

S y n t a x  
We describe the set O of objects and the set E of expressions of an 

FFP system. These depend on the choice of some set A of atoms, which 
we take as given. We assume that  T (true), F [false), ~ (the emp ty  
sequence), and # (default) belong to A, as well as "numbers"  of various 
kinds, etc. 

( 1 )  Bottom, ± ,  is an object but  not an atom. 

(2) Every a tom is an object. 
(3) Every object is an expression. 
(4) If Xm . . . .  , Xn are objects [expressions], then  (x~ . . . . .  xn) is an 

object [resp., expression] called a sequence (of length n) for n > 1. The 
object ]expression] xi for 1 _< i _< n, is the ith element of the sequence 
(Xm . . . . .  xi . . . . .  xn). (~ is both a sequence and an atom; its length is 0.) 

(5) If x and y are expressions, then  (x:y) is an expression called an 
application, x is its operator and y is its operand. Both are elements of 
the expression. 

(6) If x = (xl . . . . .  Xn) and if one of the e l emen t s ' o f  x is _L, then  
x = _l_. That  is, ( . . . .  _L . . . .  ) = _L. 

(7) All objects and expressions are formed by finite use of the above 
rules. 

A subexpression of an expression x is ei ther x itself or a subexpres-  
sion of an e lement  of x. An FFP object is an expression that  has no 
application as a subexpression.  Given the same set of atoms, FFP and 
FP objects are the same. 

1 3 . 3  

I n f o r m a l  R e m a r k s  
About  FFP Semant ics  

13.3.1 T h e  M e a n i n g  of  E x p r e s s i o n s ;  t h e  S e m a n t i c  F u n c t i o n  ~. 
Every FFP expression e has a meaning, Ize, which is a lways an object; 
ge is found by  repeatedly  replacing each innermost  applicat ion in e by 
its meaning.  If this process  is nonterminat ing,  the meaning  of e is ±.  
The meaning  of an innermos t  applicat ion (x:y) Isince it is innermost ,  
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x and y must be objects I is the result of applying the function represented 
by x to y, just as in FP systems, except that in FFP systems functions 
are represented by objects, ra ther  than by funct ion expressions, with 
atoms [instead of function symbolsl representing primitive and defined 
functions, and with sequences representing the FP functions denoted 
by functional forms. 

The association between objects and the functions they represent  
is given by the representation function, p, of the FFP system. (Both p 
and/z  belong to the description of the system, not the system itself.) 
Thus if the atom NULL represents  the FP function null, then 
pNULL = null and the meaning of (NULL:A) is iz(NULL:A) = 
(pNULL):A = null:A = F. 

From here on, as above, we use the colon in two senses. When  
it is be tween two objects, as in (NULL:A), it identifies an FFP appli- 
cation that denotes only itself; when  it comes between a function 
and an object, as in (pNULL):A or null:A, it identifies an FP-like 
application that denotes the result of applying the function to the object. 

The fact that FFP operators are objects makes possible a function, 
apply, which is meaningless in FP systems: 

apply:(x ,y)  = (x:y).  

The result of apply: (x,y) , namely, (x: y), is meaningless in FP systems 
on two levels. First, (x:y) is not itself an object; it illustrates another  
difference between FP and FFP systems: some FFP functions, like app- 
ly, map objects into expressions, not directly into objects as FP func- 
tions do. However,  the meaning of apply: ix ,y)  is an object (see below). 
Second, ix:y) could not be even an intermediate result in an FP system; 
it is meaningless in FP systems since x is an object, not a 
function, and FP systems do not  associate functions with objects. Now 
if APPLY represents  apply, then  the meaning of (APPLY: INULL,A)) 
is 

#(APPLY:(NULL,A)) = #((pAPPLY):iNULL,A)) 

= #(apply~ (NULL,A)) 

= #(NULL:A) = #((oNULL):A) 

= /~(null:A) = /zF = F. 

The last step follows from the fact that every object is its own meaning. 
Since the meaning function # eventually evaluates all applications, one 
can think of apply:(NULL,A) as yielding F even though the actual result 
is (NULL:A). 

13.3.2 H o w  Objec t s  Represent Functions; the Representation 
Function p. As we have seen, some atoms Iprimitive atoms) will 
represent  the primitive functions of the system. Other  atoms can 
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represent defined functions just as symbols can in FP systems. If 
an atom is neither primitive nor defined, it represents 5_, the function 
which is ± everywhere. 

Sequences also represent functions and are analogous to the func- 
tional forms of FP. The function represented by a sequence is given 
Irecursively) by the following rule. 

1 9 7 7  
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M e t a c o m p o s i t i o n  ru le  

(P(XI . . . . .  Xn)) :y  = (PX1):((X, . . . . .  Xn), y ) ,  

where the xi's and y are objects. Here Oxl determines what  functional 
form (Xl, ... , Xn) represents, and x2 . . . . .  Xn are the parameters 
of the form {in FFP, x~ itself can also serve as a parameter}. Thus, 
for example, let Def  oCONST---  2ol; then (CONST,  x) in FFP repre- 
sents the FP functional form }, since, by the metacomposit ion rule, if 
y ~ _1_, 

(o(CONSr, x)):y = (oCONSr):((CONST, x),y) 

= 2 o l ( ( C O N S T , x ) , y )  = x.  

Here we can see that the first, controlling, operator of a sequence or 
form, CONST in this case, always has as its operand, after metacom- 
position, a pair whose first element is the sequence itself and whose 
second element is the original operand of the sequence, y in this 
case. The controlling operator can then rearrange and reapply the 
elements of the sequence and original operand in a great variety Of ways. 
The significant point about metacomposit ion is that it permits the 
definition of new functional forms, in effect, merely by defining new 
functions. It also permits one to write recursive functions without  a 
definition. 

We give one more example of a controlling function for a functional 
form: Def  oCONS ~ aapply otl °distr. This definition results in (CONS, 

f~ . . . . .  fn) - -where  the fi are objects--representing the same function 
as [P f l ,  ... , Pfn]. The following shows this. 

( o ( C O N S , f l  . . . . .  fn)) :x 

= (oCONS) : ( (CONS , f l  . . . . .  fn),X) by metacomposit ion 

= aapply otl odistr:((CONS, f~ . . . . .  fn),X) by def of oCONS 

= ~xapply:((f~,x) . . . .  , (fn,X)) by def of tl and distr and o 

= (apply:(f l ,x)  . . . . .  apply:(fn,X)) by def of a 

= ((f~:x) . . . . .  (fn:X)) by def of apply. 

In evaluating the last expression, the meaning function # will produce 
the meaning of each application, giving 0 fi:x as the ith element. 
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Usually, in describing the function represented by a sequence, 
we shall give its overall effect rather  than show how its controlling 
operator  achieves that effect. Thus we would simply write 

(p(CONS,fl . . . . .  fn)) :x  = ((f l :x)  . . . . .  (fn :X)) 

instead of the more detailed account  above. 

We need a controlling operator, COMP, to give us sequences 
representing the functional form composition. We take p COMP to be 
a primitive funct ion such that, for all objects x, 

(o(COMP, f l  . . . . .  fn) ) :x  = (fl:(fz:(. . .  :(fn:x). .-)))  for n >  1. 

{I am indebted to Paul McJones for his observation that ordinary 
composit ion could be achieved by this primitive funct ion rather  than 
by using two composit ion rules in the basic semantics, as was done 
in an earlier paper  [2].) 

Although FFP systems permit the definition and investigation of new 
functional forms, it is to be expected that most  programming would 
use a fixed set of forms {whose controlling operators are primitives), 
as in FE so that the algebraic laws for those forms could be employed, 
and so that a structured programming style could be used based on those 
forms. 

In addition to its use in defining functional forms, metacomposi t ion 
can be used to create recursive functions directly wi thout  the use 
of recursive definitions of the form D ef  f - =  E( f ) .  For example, if 
oMLAST = - - n u l l o t l o 2 ~ l o 2 ;  app lyo [1 ,  t l o2 ] ,  t h e n  o(MLAST) 
--- last, where  last:x --- x = (xt . . . . .  Xn) ~Xn; ±. Thus the operator  
(MLAST) works as follows: 

I~ ( (MLAS T) : (A, B) ) 

= ~t(oMLAST: ((MLAST), (A,B))) by metacomposi t ion 

= ~(apply o [1, tlo 2]:((MLAST), (A, B))) 

= v(apply: ((MLAST), (B))) 

= it((MLAST):(B)) 

= tz(oMLAST: ((MLAST), (B))) 

=V(1 o2:((MLAST), (B))) 

= O .  

13.3.3 S u m m a r y  of  t he  P r o p e r t i e s  o f  0 and /z .  So far we have 
shown how 0 maps atoms and sequences  into functions and how 
those functions map objects into expressions. Actually, 0 and all FFP 
functions can be extended so that they are defined for all expressions. 
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With such extensions the proper t ies  of p and /z  can be summar ized  
as follows: 

/z E [expressions ~ objects]. 

If  x is an object , /zx = x. 

If e is an expression and e = (e~ . . . . .  en), then  #e = (#el . . . . .  

1 9 7 7  
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P E [expressions ~ [expressions ~ expressions]]. 

For any  expression e, pe = p(/ze). 

If x is an object and  e an expression, then  px:e = px:(#e). 

(7) If x and y are objects, then/~(x :y)  = /z(px:y). In words:  the 
meaning  of an FFP applicat ion (x:y) is found by  applying px, the 
funct ion represen ted  by x, to y and then finding the meaning  of the 
result ing expression {which is usually an object and is then  its own 
meaning}. 

13.3.4 Cells,  Fe tch ing ,  a n d  Stor ing.  For a n u m b e r  of reasons it 
is convenient  to create funct ions which  serve as names.  In particular, 
we shall need  this facility in describing the semant ics  of definitions 
in FFP systems.  To introduce naming functions, that is, the ability 
to fetch the contents of a cell with a given name  from a store {a sequence 
of ceils I and to store a cell wi th  given name  and contents  in such 
a sequence,  we introduce objects called cells and two new functional  
forms, fetch and store. 

Ceils. A cell is a triple (CELL, name, contents). We use this fo rm instead 
of the pair  (name, contents) so that  ceils can be dist inguished f rom 
ordinary pairs. 

Fetch. The funct ional  fo rm fetch takes an object n as its pa rame te r  {n 
is cus tomari ly  an a tom serving as a name}; it is wri t ten ?n (read "fetch 
n"). Its definit ion for objects n and x is 

Tn:x-= x = 4) ~ # ;  atom:x--,_L; ( l :x )  = (CELL,n,c)--÷c; Tnotl:x 

where  # is the a tom "default:' Thus ?n {fetch nl applied to a sequence  
gives the contents  of the first cell in the sequence  whose  name  is n; 
if there is no cell named  n, the result is default, # .  Thus ?n is the name  
funct ion for the name  n. {We assume that  pFETCH is the pr imit ive 
funct ion such that  P (FETCH, n) --= ?n. Note that  T n s imply  passes  over  
e lements  in its operand  that  are not ceils.} 

Store and push, pop, purge. Like fetch, store takes an object n as its 
parameter ;  it is wri t ten ,Ln {"store n"). When  applied to a pair  (x,y>, 
where  y is a sequence,  Sn r emoves  the first cell n a m e d  n f rom y, if any, 
then  creates a new cell n a m e d  n with  contents  x and appends  it to y. 
Before defining J,n {store n I we shall specify four auxil iary functional  
forms. {These can be used in combinat ion  wi th  fetch n and store n 
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to obtain multiple, named, LIFO stacks within a storage sequence.I Two 
of these auxiliary forms are specified by recursive functional equations; 
each takes an object n as its parameter.  

(cellname n) -= atom ~ F; eq o [length, 3] ~ eq o [[CELL, hi ,  [1, 2]] ; F 

(push n) ---- pair ~ apndl o [[CELL, h, 1], 2] ; i 

(pop n) ~- null ~ ~; (cellname n) o 1 ~ tl; apndl o [1, (pop n) otl] 

(purge n) =- null ~ ~; (cellname n)o 1 ~ (purge n)otl;  
apndl o [1, (purge n) otl] 

,Ln -= p a i r ~ ( p u s h  n)o[1, (pop n)o2]; i 

The above functional forms work as follows. For x -~ _L, (cellname n) :x 
is T i f x  is a cell named  n; otherwise it is F. (pop n):y removes the first 
cell named n f rom a sequence y; (purge n):y removes all cells named  
n from y. (push n): (x,y) puts a cell named n with contents  x at the head 
of sequence y; ,~n: (x,y) is (push n): (x,(pop n) :y). 

{Thus (push n): (x,y) = y '  pushes x onto the top of a "stack" named  
n in y ' ;  x can be read by Tn:y' = x and can be removed  by (pop n):y ' ;  
thus tn °(pop n) :y '  is the element  below x in the stack n, provided there 
is more than one cell named  n in y'.} 

13.3.5 D e f i n i t i o n s  in  F F P  Sys tems.  The semantics of an FFP 
system depends on a fixed set of definitions D [a sequence of cells}, 
just  as an FP system depends on its informally given set of definitions. 
Thus the semantic function/~ depends on D; altering D gives a new 
/~' that reflects the altered definitions. We have represented D as an 
object because in AST systems {Section 141 we shall want  to t ransform 
D by applying functions to it and to fetch data f rom i t - - i n  addition to 
using it as the source of funct ion definitions in FFP semantics. 

If (CELL,n,c) is the first cell named  n in the sequence D [and n is 
an atom} then it has the same effect as the FP definition D e f  n -= 0c, 
that is, the meaning of (n:x) will be the same as that of pc:x. Thus, for 
example, if (CELL,CONST,(COMP,2,1)) is the first cell in D named  
CONST, then it has the same effect as D e f  C O N S T -  = 2 o 1, and the FFP 
system with that D would find 

#(CONST: ((x,y),z)) = y 

and consequent ly  

#( (CONST,A) :B) = A. 

In general, in an FFP system with definitions D, the meaning of an 
application of the form (atom:x) is dependent  on D; if ?atom:D -~ # 
{that is, atom is defined in D) then its meaning is #(c:x),  where  c = 
?atom:D, the contents  of the first cell in D named  atom. If ?atom:D = 
# ,  then atom is not defined in D and either atom is primitive, i.e., the 
system knows how to compute  patom:x, and #(atom:x) = iz(oatom:x); 
otherwise ~(atom:x) = _L. 
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1 3 . 4  

F o r m a l  S e m a n t i c s  

f o r  F F P  S y s t e m s  

We assume that a set A of atoms, a set D of definitions, a set P C A 
of primitive atoms and the primitive functions they represent  have 
all been chosen. We assume that pa is the primitive function represented 
by a if a belongs to P, and that oa = i i f  a belongs to Q, the set of 
atoms in A-P that are not defined in D. Although p is defined for 
all expressions (see 13.3.3), the formal semantics uses its definition 
only on P and Q. The functions that p assigns to other  expressions x 
are implicitly de termined and applied in the following semantic rules 
for evaluating #(x:y). The above choices of A and D, and of P and the 
associated primitive functions determine the objects, expressions, and 
the semantic function #D for an FFP system. (We regard D as fixed and 
write/~ for/~D.) We assume D is a sequence and that t y : D  can be com- 
puted (by the function Ty as given in Section 13.3.4) for any atom y. 
With these assumptions we define/z as the least fixed point of the func- 
tional r, where  the funct ion r/~ is defined as follows for any function 
# (for all expressions x, xi, y, Yi, z, and w): 

(r#)x ------ x E A-~x; 

X = (X l . . . .  , Xn)- '~( /AX 1 . . . . .  / . tXn/;  

x = ( y : z ) ~  

(y ~ A & (Ty:D) = # ~ ~((py)(#z)); 

y E A  & (?y:D) = w~lz(w:z);  

Y = (Yl . . . .  , Yn)~/z(y,  :(y,z}); #(/By:z)); _k 

The above description of # expands the operator  of an application by 
definitions and by metacomposi t ion before evaluating the operand. It 
is assumed that predicates like "x E A" in the above definition of r/z 
are _L-preserving (e.g., "_k E A" has the value A_) and that the condi- 
tional expression itself is also _k-preserving. Thus ( r /z)±~ _L and (r/z) 
(_k:z) ~ _L. This concludes the semantics of FFP systems. 
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14 
Applicative State Transition Systems 

(AST Systems 1 

1 4 . 1  

I n t r o d u c t i o n  

This section sketches a class of systems mentioned earlier as alterna- 
tives to von Neumann  systems. It must be emphasized again that these 
applicative state transition systems are put  forward not as practical 
programming systems in their  present  form, but  as examples of a class 
in which applicative style programming is made available in a history 

A F u n c t i o n a l  Style a n d  I ts  A lgeb ra  of P r o g r a m s  115 



sensitive, but non-yon Neumann system. These systems are loosely 
coupled to states and depend on an underlying applicative system 
for both their programming language and the description of their state 
transitions. The underlying applicative system of the AST system 
described below is an FFP system, but other applicative systems could 
also be used. 

To understand the reasons for the structure of AST systems, it is 
helpful first to review the basic structure of avon  Neumann system, 
Algol, observe its limitations, and compare it with the structure of AST 
systems. After that review a minimal AST system is described; a small, 
top-down, self-protecting system program for file maintenance and 
running user programs is given, with directions for installing it in the 
AST system and for running an example user program. The system 
program uses "name functions" instead of conventional names and the 
user may do so too. The section concludes with subsections discussing 
variants of AST systems, their general properties, and naming systems. 

14.2  
The Structure of Algol 

Compared to That of AST Systems 
An Algol program is a sequence of statements, each representing 

a transformation of the Algol state, which is a complex repository of 
information about the status of various stacks, pointers, and variable 
mappings of identifiers onto values, etc. Each statement communicates 
with this constantly changing state by means of complicated protocols 
peculiar to itself and even to its different parts (e.g., the protocol 
associated with the variable x depends on its occurrence on the left or 
right of an assignment, in a declaration, as a parameter, etc.). 

It is as if the Algol state were a complex "store" that communicates 
with the Algol program through an enormous "cable" of many 
specialized wires. The complex communications protocols of this cable 
are fixed and include those for every statement type. The "meaning" 
of an Algol program must be given in terms of the total effect of a vast 
number of communications with the state via the cable and its pro- 
tocols [plus a means for identifying the output and inserting the input 
into the state). By comparison with this massive cable to the Algol 
state/store, the cable that is the yon Neumann bottleneck of a computer 
is a simple, elegant concept. 

Thus Algol statements are not expressions representing state-to-state 
functions that are built up by the use of orderly combining forms from 
simpler state-to-state functions. Instead they are complex messages with 
context-dependent parts that nibble away at the state. Each part 
transmits information to and from the state over the cable by its own 
protocols. There is no provision for applying general functions to the 
whole state and thereby making large changes in it. The possibility of 
large, powerful transformations of the state S by function application, 
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S ~ f : S ,  is in fact inconceivable in the von N eu m an n  -- cable and 
pro tocol - -context :  there could be no assurance that the new state f :  S 
would match the cable and its fixed protocols unless f is restricted to 
the tiny changes a l lowed by the cable in the first place. 

We want  a computing system whose semantics does not depend on 
a host of baroque protocols for communicat ing with the state, and 
we want to be able to make large t ransformations in the state by 
the application of general functions. AST systems provide one way 
of achieving these goals. Their  semantics has two protocols for getting 
information f rom the state: (1) get f rom it the definition of a function 
to be applied, and (2) get the whole state itself. There is one protocol 
for changing the state: compute  the new state by function application. 
Besides these communicat ions  with the state, AST semantics is appli- 
cative (i.e., FFP). It does not depend on state changes because the 
state does not change at all during a computation.  Instead, the result 
of a computat ion is output  and a new state. The structure of an AST 
state is slightly restricted by one of its protocols: It must  be possible 
to identify a definition {i.e., cell} in it. Its s t r u c t u r e -  it is a s e q u e n c e -  
is far simpler than that of the Algol state. 

Thus the structure of AST systems avoids the complexity and 
restrictions of the von Neumann  state {with its communicat ions  pro- 
tocols} while achieving greater power  and f reedom in a radically dif- 
ferent  and simpler f ramework.  
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1 4 . 3  

S t r u c t u r e  o f  a n  A S T  Sys t em  

An AST system is made up of three elements: 

(1) An applicative subsystem {such as an FFP system}. 

(2) A state D tfiat is the set of definitions of the applicative sub- 
system. 

(3) A set of transition rules that describe how inputs are transformed 
into outputs  and how the state D is changed. 

The programming language of an AST system is just that of its 
applicative subsystem. {From here on we shall assume that the latter 
is an FFP system.} Thus AST systems can use the FP programming 
style we have discussed. The applicative subsystem cannot  change the 
state D and it does not change during the evaluation of an expression. 
A new state is computed  along with output  and replaces the old state 
when  output  is issued. (Recall that a set of definitions D is a sequence 
of cells; a cell name is the name of a defined function and its contents 
is the defining expression. Here, however,  some cells may  name data 
rather than functions; a data name n will be used in ?n (fetch n) whereas 
a function name will be used as an operator  itself.} 

We give below the transition rules for the e lementary  AST system 

A Functional Style and Its Algebra of Programs 117 



we shall use for examples of programs. These are perhaps the simplest 
of many possible transition rules that could determine the behavior 
of a great variety of AST systems. 

14.3.1 Transition Rules for an Elementary AST System. When 
the system receives an input x, it forms the application (SYSTEM:x) 
and then proceeds to obtain its meaning in the FFP subsystem, using 
the current state D as the set of definitions. SYSTEM is the distinguished 
name of a function defined in D {i.e., it is the "system program"). 
Norma!ly the result is a pair 

Iz(SYSTEM:x) = (o,d) 

where o is the system output that results from input x and d becomes 
the new state D for the system's next input. Usually d will be a copy 
or partly changed copy of the old state. If is(SYSTEM:x) is not a pair, 
the output is an error message and the state remains unchanged. 

14.3.2 Transition Rules: Exception Conditions and Startup. 
Once an input has been accepted, our system will not accept another 
{except (RESET, x), see below) until an output has been issued and 
the new state, if any, installed. The system will accept the input 
(RESET, x) at any time. There are two cases: {a) if SYSTEM is defined 
in the current state D, then the system aborts its current computation 
without altering D and treats x as a new normal input; {b) if SYSTEM 
is not defined in D, then x is appended to D as its first element. 
{This ends the complete description of the transition rules for our 
elementary AST system.) 

If SYSTEM is defined in D it can always prevent any change in 
its own definition. If it is not defined, an ordinary input x will produce 
#(SYSTEM:x) = ± and the transition rules yield an error message and 
an unchanged state; on the other hand, the input (RESET, (CELL, 
SYSTEM, s)) will define SYSTEM to be s. 

14.3.3 Program Access to the State; the Function pDEFS. Our 
FFP subsystem is required to have one new primitive function, defs, 
named DEFS such that for any object x ~ ±, 

defs:x = pDEFS:x = D 

where D is the current state and set of definitions of the AST system. 
This function allows programs access to the whole state for any purpose, 
including the essential one of computing the successor state. 

1 4 . 4  
An Example of a S y s t e m  P r o g r a m  

The above description of our elementary AST system, plus the FFP 
subsystem and the FP primitives and functional forms of earlier 
sections, specify a complete history-sensitive computing system. Its 
input and output behavior is limited by its simple transition rules, 
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but otherwise it is a powerful  system once it is equipped with a suitable 
set of definitions. As an example of its use we shall describe a small 
system program, its installation, and operation. 

Our example system program will handle queries and updates 
for a file it maintains, evaluate FFP expressions, run  general user 
programs that do not damage the file or the state, and allow authorized 
users to change the set of definitions and the system program itself. 
All inputs it accepts will be of the form (key,input) where  key is 
a code that determines  both the input class (system-change, expression, 
program, query, update) and also the identity of the user and his authority 
to use the system for the given input class. We shall not specify a 
format for key. Input is the input itself, of the class given by key. 

1 9 7 7  

'1 i | | ' h | ~  
A ~ a , d  
|A'I. l u l l '  

14.4.1 G e n e r a l  P l a n  of  t h e  Sys tem P ro g ram .  The state D of our 
AST system will contain the definitions of all nonprimit ive functions 
needed for the system program and for users' programs. (Each defini- 
tion is in a cell of the sequence D.} In addition, there will be a cell 
in D named FILE with contents file, which the system maintains. 
We shall give FP definitions of functions and later show how to get 
them into the system in their  FFP form. The transition rules make 
the input the operand of SYSTEM, but our plan is to use name-functions 
to refer to data, so the first thing we shall do with the input is to 
create two cells named KEY and INPUT with contents key and input 
and append these to D. This sequence of cells has one each for key, 
input, and file; it will be the operand of our  main function called 
subsystem. Subsystem can then obtain key by applying TKEY to its 
operand, etc. Thus the definit ion 

Def  system -= pair ~ subsystemof;  [NONPAIR, defs] 

where  

f ~  $INPUTo[2, *KEyo[1, defs]] 

causes the system to output  NONPAIR and leave the state unchanged 
if the input is not a pair. Otherwise,  if it is (key,input), then 

f: (key, input) = ((CELL, INPUT, input), 
(CELL,KEY, key), d, . . . . .  dn) 

where  D = (dl . . . . .  dn). (We might have constructed a different 
operand than the one above, one with just three cells, for key, input, 
and file. We did not do so because real programs, unlike subsystem, 
would contain many  name functions referring to data in the state, 
and this "s tandard" construction of the operand would suffice then 
as well.) 
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14.4.2 The  " S u b s y s t e m "  Func t i on .  We now give the FP  defini- 
tion of the function subsystem, followed by brief explanations of its 
six cases and auxiliary functions. 

Def  subsystem 

is-system-change o t K E Y ~  [report-change, apply] o [tINPUT, defs]; 
is-expression o t K E Y ~  [tINPUT, defs]; 
is-program o t K E Y ~  system-check °apply o [tINPUT, defs] ; 
is-query o tKEY-~ [query-response o [tINPUT, $FILE], defs] ; 
is-update o t K E Y ~  

[report-update, $FILE o [update, defs]] o [tINPUT, tFILE] ; 
[report-error o [tKEY, tINPUT], defs]. 

This subsystem has five " p ~ f ; "  clauses and a final default function, 
for a total of six classes of inputs; the t reatment  of each class is given 
below. Recall that the operand of subsystem is a sequence of cells 
containing key, input, andfile as well as all the defined functions of D, 
and that subsystem: operand = (output ,newstate) . 

Defaul t  inputs. In this case the result is given by the last {default I 
function of the definition when  key does not satisfy any of the preceding 
clauses. The output  is report-error:(key,input). The state is un- 
changed since it is given by defs: operand = D. tWe leave to the reader's 
imagination what  the function report-error will generate from its 
operand.I 

System-change inputs. When 

is-system-change o tKEY:operand = is-system-change:key = T, 

key specifies that the user is authorized to make a system change and 
that input = tINPUT: operand represents a function f t h a t  is to be applied 
to D to produce the new state f:  D. IOf course f:  D can be a useless new 
state; no constraints are placed on it.) The output  is a report, namely, 
report-change: (input, D ) . 

Expression inputs. When is-expression :key = T, the system under- 
stands that the output is to be the meaning of the FFP expression 
input; tINPUT: operandproduces it and it is evaluated, as are all expres- 
sions. The state is unchanged.  

Program inputs and system self-protection. When is-program: key = T, 
both the output  and new state are given by (pinput):D = (output, 
newstate). If newstate contains file in suitable condition and the defini- 
tions of system and other protected functions, then system-check: 
(output ,newstate l = (output ,newstate ) . Otherwise, system-check : (output, 
newstate ) = (error-report,D). 
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Although program inputs can make major, possibly disastrous changes 
in the state when it produces newstate, system-check carl use any criteria 
to either allow it to become the actual new state or to keep the old. 
A more sophisticated system-check might correct only prohibited 
changes in the state. Functions of this sort are possible because they 
can always access the old state for comparison with the new state-to- 
be and control what state transition will finally be allowed. 
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File query inputs. If is-query:key = T, the function query-response 
is designed to produce the output = answer to the query input from 
its operand (input, file). 

File update inputs. If is-update:key = T, input specifies a file trans- 
action understood by the function update, which computes updated- 
file = update: (input, filel. Thus $FILE has (updated-file, D) as its operand 
and thus stores the updated file in the cell FILE in the new state. The 
rest of the state is unchanged. The function report-update generates 
the output from its operand (input, file). 

14.4.3 Instal l ing the  System Program. We have described the 
function called system by some FP definitions {using auxiliary functions 
whose behavior is only indicated}. Let us suppose that we have FP 
definitions for all the nonprimitive functions required. Then each 
definition can be converted to give the name and contents of a cell 
in D {of course this conversion itself would be done by a better system}. 
The conversion is accomplished by changing each FP function name 
to its equivalent atom {e.g., update becomes UPDATE} and by re- 
placing functional forms by sequences whose first member is the 
controlling function for the particular form. Thus *FILE o [update, defs] 
is converted to 

< COMP,(STORE,FILE), (CONS, UPDATE,DEFS)) 

and the FP function is the same as that represented by the FFP object, 
provided that update ~ oUPDATE and COMP, STORE, and CONS rep- 
resent the controlling functions for composition, store, and construction. 

All FP definitions needed for our system can be converted to cells 
as indicated above, giving a sequence Do. We assume that the AST 
system has an empty state to start with; hence SYSTEM is not defined. 
We want to define SYSTEM initially so that it will install its next 
input as the state; having done so we can then input Do and all our 
definitions will be installed, including our program--system--itself.  
To accomplish this we enter our first input 

(RESET, (CELL, SYSTEM, loader)) 

where 

loader ~ (CONS, ( ( CONST, DONE) ,ID) . 
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Then, by the transition rule for R E S E T w h e n  SYSTEM is undef ined in 
D, the cell in our  input is put  at the head of D = ~, thus defining 
pSYSTEM ~ ploader ~ [DONE,id]. Our second input is Do, the set of 
definitions we wish to become the state. The regular transition rule 
causes the AST system to evaluate 

g(SYSTEM:Do) = [DONE,id]:Do = (DONE,Do).  

Thus the output  f rom our second input is DONE, the new state is Do, 
and pSYSTEM is now our  system program {which only accepts inputs 
of the form (key,input)). 

Our next  task is to load the file (we are given an initial value file). 
To load it we input a program into the newly  installed system that 
contains file as a constant and stores it in the state; the input is 

~program-key, [DONE, store-file] 

where  

pstore-file ~ +FILE o [file, id]. 

Program-key identifies [DONE,store-file] as a program to be applied to 
the state Do to give the output  and new state D1 which is 

Ostore-file : D o = ~ FILE o [file, id] : D o, 

or Do with a cell containing file at its head. The output  is 

DONE: Do = DONE. 

We assume that system-check will pass (DONE, D 1> unchanged.  FP ex- 
pressions have been used in the above in place of the FFP objects 

they denote, e.g., DONE for (CONST, DONE>. 

14.4.4 Using  t he  S y s t e m .  We have not said how the system's  
file, queries, or updates are structured,  so we cannot  give a detailed 
example of file operations. However ,  the structure of subsystem shows 
clearly how the system's response to queries and updates depends 
on the functions query-response,  update,  and report-update.  

Let us suppose that matrices m, n named  M, and N are stored in 
D and that the function MM described earlier is defined in D. Then  
the input 

(expression-key, (MMo [?M, TN] oDEFS: # )) 

would give the product  of the two matrices as output and an unchanged 
state. Expression-key identifies the application as an expression to be 
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evaluated and since defs: # = D and [I"M,~N]:D = (re,n), the value 
of the expression is the result MM:(m,n), which is the output. 

Our miniature system program has no provision for giving control 
to a user's program to process many inputs, but it would not be dif- 
ficult to give it that capability while still monitoring the user's program 
with the option of taking control back. 
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14.5  

Variants 
o[ AST Systems 

A major extension of the AST systems suggested above would 
provide combining forms, "system forms," for building a new AST 
system from simpler, component AST systems. That is, a system form 
would take AST systems as parameters and generate a new AST system, 
just as a functional form takes functions as parameters and generates 
new functions. These system forms would have properties like those 
of functional forms and would become the "operations" of a useful 
"algebra of systems" in much the same way that functional forms are 
the "operations" of the algebra of programs. However, the problem of 
finding useful system forms is much more difficult, since they must 
handle RESETS, match inputs and outputs, and combine history- 
sensitive systems rather than fixed functions. 

Moreover, the usefulness or need for system forms is less clear than 
that for functional forms. The latter are essential for building a great 
variety of functions from an initial primitive set, whereas, even without 
system forms, the facilities for building AST systems are already so rich 
that one could build virtually any system (with the general input and 
output properties allowed by the given AST scheme). Perhaps system 
forms would be useful for building systems with complex input and 
output arrangements. 

14 .6  

Remarks 
about AST Systems 

As I have tried to indicate above, there can be innumerable variations 
in the ingredients of an AST system--how it operates, how it deals with 
input and output, how and when it produces new states, and so on. 
In any case, a number of remarks apply to any reasonable AST system: 

(a) A state transition occurs once per major computation and can 
have useful mathematical properties. State transitions are not involved 
in the tiniest details of a computation as in conventional languages; 
thus the linguistic von Neumann bottleneck has been eliminated. No 
complex "cable" or protocols are needed to communicate with the 
state. 
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(b) Programs are written in an applicative language that can accom- 
modate a great range of changeable parts, parts whose power and 
flexibility exceed that of any von Neumann language so far. The word- 
at-a-time style is replaced by an applicative style; there is no division 
of programming into a world of expressions and a world of statements. 
Programs can be analyzed and optimized by an algebra of programs. 

(c) Since the state cannot change during the computation of 
system :x, there are no side effects. Thus independent applications can 
be evaluated in parallel. 

(d) By defining appropriate functions one can, I believe, introduce 
major new features at any time, using the same framework. Such 
features must be built into the framework of avon Neumann language. 
I have in mind such features as: "stores" with a great variety of naming 
systems, types and type checking, communicating parallel processes, 
nondeterminacy and Dijkstra's "guarded command" constructs [8], 
and improved methods for structured programming. 

(e) The framework of an AST system comprises the syntax and 
semantics of the underlying applicative system plus the system 
framework sketched above. By current standards, this is a tiny 
framework for a language and is the only fixed part of the system. 

14 .7  

N a m i n g  Systems in A S T  
and yon N e u m a n n  Models 

In an AST system, naming is accomplished by functions as indicated 
in Section 13.3.3. Many useful functions for altering and accessing 
a store can be defined (e.g., push, pop, purge, typed fetch, etc.). All 
these definitions and their associated naming systems can be intro- 
duced without altering the AST framework. Different kinds of "stores" 
(e.g., with "typed cells") with individual naming systems can be used 
in one program. A cell in one store may contain another entire store. 

The important point about AST naming systems is that they utilize 
the functional nature of names {Reynolds' GEDANKEN [19] also does 
so to some extent within a yon Neumann framework). Thus name 
functions can be composed and combined with other functions by 
functional forms. In contrast, functions and names in yon Neumann 
languages are usually disjoint concepts and the function-like nature 
of names is almost totally concealed and useless, because (a) names 
cannot be applied as functions; (b) there are no general means to 
combine names with other names and functions; (c) the objects to 
which name functions apply (stores) are not accessible as objects. 

The failure of yon Neumann languages to treat names as functions 
may be one of their more important weaknesses. In any case, the 
ability to use names as functions and stores as objects may turn out 
to be a useful and important programming concept, one which should 
be thoroughly explored. 

124 JOHN BACKUS 



15 
Remarks 

about Computer Design 
The dominance of yon Neumann languages has left designers with 

few intellectual models for practical computer designs beyond varia- 
tions of the yon Neumann computer. Data flow models [1], [7], [13] 
are one alternative class of history-sensitive models. The substitution 
rules of lambda-calculus-based languages present serious problems for 
the machine designer. Berkling [3] has developed a modified lambda 
calculus that has three kinds of applications and that makes renaming 
of variables unnecessary. He has developed a machine to evaluate 
expressions of this language. Further experience is needed to show how 
sound a basis this language is for an effective programming style and 
how efficient his machine can be. 

Mag6 [15] has developed a novel applicative machine built from 
identical components (of two kinds). It evaluates, directly, FP-like and 
other applicative expressions from the bottom up. It has no yon 
Neumann store and no address register, hence no bottleneck; it is 
capable of evaluating many applications in parallel; its built-in opera- 
tions resemble FP operators more than yon Neumann computer opera- 
tions. It is the farthest departure from the yon Neumann computer that 
I have seen. 

There are numerous indications that the applicative style of program- 
ming can become more powerful than the yon Neumann style. 
Therefore it is important for programmers to develop a new class of 
history-sensitive models of computing systems that embody such a style 
and avoid the inherent efficiency problems that seem to attach to 
lambda-calculus-based systems. Only when these models and their ap- 
plicative languages have proved their superiority over conventional 
languages will we have the economic basis to develop the new kind 
of computer that can best implement them. Only then, perhaps, will 
we be able to fully utilize large-scale integrated circuits in a computer 
design not limited by the yon Neumann bottleneck. 
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16 
Summary 

The fifteen preceding sections of this paper can be summarized as 
follows. 

Sect ion 1. Conventional programming languages are large, com- 
plex, and inflexible. Their limited expressive power is inadequate to 
justify their size and cost. 

Section 2. The models of computing systems that underlie program- 
ming languages fall roughly into three classes: (a) simple operational 
models (e.g., Turing machines), (b) applicative models (e.g., the lambda 
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calculus), and (c) von Neumann models {e.g., conventional computers 
and programming languages). Each class of models has an important 
difficulty: The programs of class (a) are inscrutable~ class (b) models 
cannot save information from one program to the next; class (c) models 
have unusable foundations and programs that are conceptually 
unhelpful. 

Sect ion 3. Von Neumann computers are built around a bottleneck: 
the word-at-a-time tube connecting the CPU and the store. Since a 
program must make its overall change in the store by pumping vast 
numbers of words back and forth through the von Neumann bottleneck, 
we have grown up with a style of programming that concerns itself with 
this word-at-a-time traffic through the bottleneck rather than with the 
larger conceptual units of our problems. 

Sect ion 4. Conventional languages are based on the programming 
style of the von Neumann computer. Thus variables = storage cells; 
assignment statements = fetching, storing, and arithmetic; control 
statements = jump and test instructions. The symbol " : = "  is the 
linguistic von Neumann bottleneck. Programming in a conventional-- 
von N e u m a n n -  language still concerns itself with the word-at-a-time 
traffic through this slightly more sophisticated bottleneck. Von 
Neumann languages also split programming into a world of expressions 
and a world of statements~ the first of these is an orderly world, the 
second is a disorderly one, a world that structured programming has 
simplified somewhat, but without attacking the basic problems of the 
split itself and of the word-at-a-time style of conventional languages. 

Sect ion 5. This section compares a v o n  Neumann program and 
a functional program for inner product. It illustrates a number of 
problems of the former and advantages of the latter: e.g., the von 
Neumann program is repetitive and word-at-a-time, works only for 
two vectors named a and b of a given length n, and can only be made 
general by use of a procedure declaration, which has complex seman- 
tics. The functional program is nonrepetitive, deals with vectors as 
units, is more hierarchically constructed, is completely general, and 
creates "housekeeping" operations by composing high-level house- 
keeping operators. It does not name its arguments, hence it requires 
no procedure declaration. 

Sect ion 6. A programming language comprises a framework plus 
some changeable parts. The framework of a v o n  Neumann language 
requires that most features must be built into it; it can accommodate 
only limited changeable parts [e.g., user-defined proceduresl because 
there must be detailed provisions in the "state" and its transition rules 
for all the needs of the changeable parts, as well as for all the features 
built into the framework. The reason the von Neumann framework is 
so inflexible is that its semantics is too closely coupled to the state: every 
detail of a computation changes the state. 
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Sec t ion  7. The changeable parts of von Neumann languages have 
little expressive power; this is why most of the language must be built 
into the framework. The lack of expressive power results from the 
inability of yon Neumann langUages to effectively use combining forms 
for building programs, which in turn results from the split between 
expressions and statements. Combining forms are at their best in 
expressions, but in von Neumann languages an expression can only 
produce a single word; hence expressive power in the world of expres- 
sions is mostly lost. A further obstacle to the use of combining forms 
is the elaborate use of naming conventions. 

Sect ion  8. APL is the first language not based on the lambda 
calculus that is not word-at-a-time and uses functional combining forms. 
But it still retains many of the problems of von Neumann languages. 

Sect ion  9. Von Neumann languages do not have useful properties 
for reasoning about programs. Axiomatic and denotational semantics 
are precise tools for describing and understanding conventional pro- 
grams, but they only talk about them and cannot alter their ungainly 
properties. Unlike von Neumann languages, the language of ordinary 
algebra is suitable both for stating its laws and for transforming an 
equation into its solution, all within the "language." 

Sect ion  10. In a history-sensitive language, a program can affect 
the behavior of a subsequent one by changing some store which is 
saved by the system. Any such language requires some kind of state 
transition semantics. But it does not need semantics closely coupled 
to states in which the state changes with every detail of the computa- 
tion. "Applicative state transition" (AST} systems are proposed as 
history-sensitive alternatives to von Neumann systems. These have: 
(a) loosely coupled state-transition semantics in which a transition 
occurs once per major computation; (b) simple states and transition 
rules; (c) an underlying applicative system with simple "reduction" 
semantics; and (d) a programming language and state transition rules 
both based on the underlying applicative system and its semantics. The 
next four sections describe the elements of this approach to non-von 
Neumann language and system design. 

Sect ion  11. A Class of informal functional programming (FP) 
systems is described which use no variables. Each system is built 
from objects, functions, functional forms, and definitions. Functions 
map objects into objects. Functional forms combine existing functions 
to form new ones. This section lists examples of primitive functions 
and functional forms and gives sample programs. It discusses the 
limitations and advantages of FP systems. 

Sect ion 12. An "algebra of programs" is described whose variables 
range over the functions of an FP system and whose "operations" 
are the functional forms of the system. A list of some twenty-four 
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laws of the algebra is followed by an example proving the equivalence 
of a nonrepetitive matrix multiplication program and a recursive one. 
The next subsection states the results of two "expansion theorems" 
that "solve" two classes of equations. These solutions express the 
"unknown" function in such equations as an infinite conditional ex- 
pansion that constitutes a case-by-case description of its behavior 
and immediately gives the necessary and sufficient conditions for 
termination. These results are used to derive a "recursion theorem" 
and an "iteration theorem," which provide ready-made expansions 
for some moderately general and useful classes of "linear" equations. 
Examples of the use of these theorems treat: (a) correctness proofs for 
recursive and iterative factorial functions, and (b) a proof of equivalence 
of two iterative programs. A final example deals with a "quadratic" 
equation and proves that its solution is an idempotent function. The 
next subsection gives the proofs of the two expansion theorems. 

The algebra associated with FP systems is compared with the 
corresponding algebras for the lambda calculus and other applicative 
systems. The comparison shows some advantages to be drawn from 
the severely restricted FP systems, as compared with the much more 
powerful classical systems. Questions are suggested about algorithmic 
reduction of functions of infinite expansions and about the use of the 
algebra in various "lazy evaluation" schemes. 

Section 13. This section describes formal functional programming 
(FFP) systems that extend and make precise the behavior of FP systems. 
Their semantics are simpler than that of classical systems and can be 
shown to be consistent by a simple fixed-point argument. 

Section 14. This section compares the structure of Algol with that 
of applicative state transition (AST) systems. It describes an AST system 
using an FFP system as its applicative subsystem. It describes the simple 
state and the transition rules for the system. A small self-protecting 
system program for the AST system is described, and how it can be 
installed and used for file maintenance and for running user programs. 
The section briefly discusses variants of AST systems and functional 
naming systems that can be defined and used within an AST system. 

Section 15. This section briefly discusses work on applicative 
computer designs and the need to develop and test more practical 
models of applicative systems as the future basis for such designs. 
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Categories and Subject Descriptors: 
C.1.1 [Processor Architectures]: Single Data Stream Architectures--yon 
Neumann architectures; D.1.1 [Programming Techniques]: Applicative 
{Functional Programming; D.2.4 [Software Engineering]: Program 
Verification-- correctness proofs; D.3.1 [Programming Languages]: Formal 
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