
1 9 7 7
T u r i n g
A w a r d
Lecture

Can Programming
Be Liberated from

the von N e u m a n n Style?
A Funct ional Style

and Its Algebra of Programs
JOHN BACKUS

IBM Research Laboratory, San Jose

The 1977 A C M Taring Award was presented to John Backus at the A C M
Annual Conference in Seattle, October 17. In introducing the recipient, Jean
E. Sammet, Chairman of the Awards Committee, made the following
comments and read a portion of the final citation. The full announcement
is in the September 1977 issue of C o m m u n i c a t i o n s , page 681.

"Probably there is nobody in the room who has not heard of Fortran
and most of you have probably used it at least Once, or at least looked
over the shoulder of someone who was writing a Fortran program. There
are probably almost as many people who have heard the letters BNF but
don't necessarily know what they stand for. Well, the B is for Backus,
and the other letters are explained in the formal citation. These two
contributions, in my opinion, are among the half dozen most important
technical contributions to the computer field and both were made by
John Backus [which in the Fortran case also involved some colleagues].
It is for these contributions that he is receiving this year's Taring award.

Author's present address: 91 Saint Germain Ave., San Francisco, CA 94114.

63

The short form of his citation is for 'profound, influential, and lasting
contributions to the design of practical high-level programming systems,
notably through his work on Fortran, and for seminal publication o/formal
procedures for the specifications of programming languages.'

The most significant part of the full citation is as/ollows:
'...Backus headed a small IBM group in New York City during the

early 1950s. The earliest product of this group's efforts was a high-level
language for scientific and technical computations called Fortran. This
same group designed the first system to translate Fortran programs into
machine language. They employed novel optimizing techniques to generate
fast machine-language programs. Many other compilers for the language
were developed, first on IBM machines, and later on virtually every make
of computer. Fortran was adopted as a US. national standard in 1966.

During the latter part of the 1950s, Backus served on the international
committees which developed Algol 58 and a later version, Algol 60. The
language Algol, and its derivative compilers, received broad acceptance
in Europe as a means for developing programs and as a formal means
of publishing the algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO conference in Paris
on the syntax and semantics of a proposed international algebraic language.
In this paper, he was the first to employ a formal technique for specifying
the syntax o/programming languages. The formal notation became known
as BNF--standing for "Backus Normal Form," or "Backus Naur Form"
to recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic world
of problem-solving on computers and to the theoretical world existing at
the interface between artificial languages and computational linguistics.
Fortran remains one o/the most widely used programming languages in
the world. Almost all programming languages are now described with some
type of formal syntactic definition.' "

Convent ional p r o g r a m m i n g languages are growing ever more enormous , bu t not
stronger. Inheren t defects at the most basic level cause t h e m to be both fat and
weak: their pr imit ive word-at-a- t ime style of p rog ramming inher i ted from their
c o m m o n a n c e s t o r - - t h e yon N e u m a n n computer , their close coupling of seman-
tics to state transit ions, their division of p r o g r a m m i n g into a world of express ions
and a world of s ta tements , their inabili ty to effectively use powerfu l combin ing
forms for bui lding new programs f rom existing ones, and their lack of useful
ma themat ica l proper t ies for reasoning about programs.

An al ternative funct ional style of p rog ramming is founded on the use of
combining forms for creating programs. Functional p rograms deal with s t ructured
data, are often nonrepet i t ive and nonrecurs ive , are hierarchical ly constructed,
do not n a m e their a rguments , and do not require the complex mach ine ry of
procedure declarat ions to become general ly applicable. Combin ing forms can
use high-level p rog rams to build still h igher level ones in a style not possible
in convent ional languages.

Associated wi th the funct ional style of p rog ramming is an algebra of p rograms
whose variables range over p rograms and whose operat ions are combin ing forms.
This algebra can be used to t r ans fo rm programs and to solve equat ions whose
" u n k n o w n s " are p rog rams in m u c h the s ame way one t r an fo rms equat ions in
h igh school algebra. These t rans format ions are given by algebraic laws and are
carried out in the same language in wh ich p rograms are writ ten. Combin ing forms
are chosen not only for their p r o g r a m m i n g power but also the power of their

64 JOHN BACKUS

associated algebraic laws. General theorems of the algebra give the detailed behavior
and termination conditions for large classes of programs.

A new class of computing systems uses the functional programming
style both in its programming language and in its stage transition rules. Unlike
yon Neumann languages, these systems have semantics loosely coupled to states --
only one state transition occurs per major computation.

I 9 7 7

' l .nimig
A~'and
I,ctlurt '

Introduction
I deeply appreciate the honor of the ACM invitation to give the

1977 Turing Lecture and to publish this account of it with the details
promised in the lecture. Readers wishing to see a summary of this paper
should turn to Section 16, the last section.

1
Conventional Programming Languages:

Fat and Flabby
Programming languages appear to be in trouble. Each successive

language incorporates, with a little cleaning up, all the features of its
predecessors plus a few more. Some languages have manuals exceeding
500 pages; others cram a complex description into shorter manuals by
using dense formalisms. The Department of Defense has current plans
for a committee-designed language standard that could require a manual
as long as 1,000 pages. Each new language claims new and fashionable
features, such as strong typing or structured control statements, but
the plain fact is that few languages make programming sufficiently
cheaper or more reliable to justify the cost of producing and learning
to use them.

Since large increases in size bring only small increases in power,
smaller, more elegant languages such as Pascal continue to be popular.
But there is a desperate need for a powerful methodology to help us
think about programs, and no conventional language even begins to
meet that need. In fact, conventional languages create unnecessary
confusion in the way we think about programs.

For twenty years programming languages have been steadily pro-
gressing toward their present condition of obesity; as a result, the study
and invention of programming languages have lost much of their
excitement. Instead, it is now the province of those who prefer to work
with thick compendia of details rather than wrestle with new ideas.
Discussions about programming languages often resemble medieval
debates about the number of angels that can dance on the head of a
pin instead of exciting contests between fundamentally differing
concepts.

Many creative computer scientists have retreated from inventing
languages to inventing tools for describing them. Unfortunately, they
have been largely content to apply their elegant new tools to studying
the warts and moles of existing languages. After examining the appalling
type structure of conventional languages, using the elegant tools

A Functional Style and Its Algebra of Programs 65

developed by Dana Scott, it is surprising that so many of us remain
passively content with that structure instead of energetically searching
for new ones.

The purpose of this article is twofold: first, to suggest that basic
defects in the framework of conventional languages make their expres-
sive weakness and their cancerous growth inevitable, and second, to
suggest some alternative avenues of exploration toward the design of
new kinds of languages.

2
Models of

Computing Systems
Underlying every programming language is a model of a computing

system that its programs control. Some models are pure abstractions,
some are represented by hardware, and others by compiling or inter-
pretive programs. Before we examine conventional languages more
closely, it is useful to make a brief survey of existing models as an
introduction to the current universe of alternatives. Existing models
may be crudely classified by the criteria outlined below.

2.1

Criteria for Models
2.1.1 Foundat ions . Is there an elegant and concise mathematical

description of the model? Is it useful in proving helpful facts about the
behavior of the model? Or is the model so complex that its description
is bulky and of little mathematical use?

2.1.2 History Sensitivity. Does the model include a notion of
storage, so that one program can save information that can affect
the behavior of a later program? That is, is the model history sensitive?

2.1.3 Type of Semantics. Does a program successively transform
states (which are not programs) until a terminal state is reached Istate-
transition semantics)? Are states simple or complex? Or can a "program"
be successively reduced to simpler "programs" to yield a final "normal
form program," which is the result (reduction semantics)?

2.1.4 Clarity and Conceptual Usefulness of Programs. Are
programs of the model clear expressions of a process or computation?
Do they embody concepts that help us to formulate and reason about
processes?

2 .2

Classification of Models
Using the above criteria we can crudely characterize three classes

of models for computing systems--simple operational models, applica-
tive models, and yon Neumann models.

66 JOHN BACKUS

I 9 7 7

" l u r i n g
A ~ a r d
l,t't'l II l't"

2.2.1 Simple Operat ional Models. Examples: Turing machines,
various automata. Foundations: concise and useful. History sensitivity:
have storage, are history sensitive. Semantics: state transition with very
simple states. Program clarity: programs unclear and conceptually not
helpful.

2.2.2 Applicative Models. Examples: Church's lambda calculus
[5], Curry's system of combinators [6], pure Lisp [17], functional
programming systems described in this paper. Foundations: concise and
useful. History sensitivity: no storage, not history sensitive. Semantics:
reduction semantics, no states. Program clarity: programs can be clear
and conceptually useful.

2.2.3 Von N e u m a n n Models. Examples: yon Neumann com-
puters, conventional programming languages. Foundations: complex,
bulky, not useful. History sensitivity: have storage, are history sensitive.
Semantics: state transition with complex states. Program clarity: programs
can be moderately clear, are not very useful conceptually.

The above classification is admittedly crude and debatable. Some
recent models may not fit easily into any of these categories. For
example, the data-flow languages developed by Arvind and Gostelow
[1], Dennis [7], Kosinski [13], and others partly fit the class of simple
operational models, but their programs are clearer than those of earlier
models in the class and it is perhaps possible to argue that some
have reduction semantics. In any event, this classification wili serve
as a crude map of the territory to be discussed. We shall be concerned
only with applicative and yon Neumann models.

3
Von N e u m a n n

Computers
In order to understand the problems of conventional programming

languages, we must first examine their intellectual parent, the von
Neumann computer. What is avon Neumann computer? When von
Neumann and others conceived it over thirty years ago, it was an
elegant, practical, and unifying idea that simplified a number of
engineering and programming problems that existed then. Although
the conditions that produced its architecture have changed radically,
we nevertheless still identify the notion of "computer" with this thirty
year old concept.

In its simplest form a v o n Neumann computer has three parts:
a central processing unit (or CPU), a store, and a connecting tube
that can transmit a single word between the CPU and the store (and
send an address to the store}. I propose to call this tube the yon Neumann
bottleneck. The task of a program is to change the contents of the

A Functional Style and Its Algebra of Programs 67

store in some major way; when one considers that this task must
be accomplished entirely by pumping single words back and forth
through the von Neumann bottleneck, the reason for its name becomes
clear.

Ironically a large part of the traffic in the bottleneck is not useful
data but merely names of data, as well as operations and data used
only to compute such names. Before a word can be sent through
the tube its address must be in the CPU: hence it must either be
sent through the tube from the store or be generated by some CPU
operation. If the address is sent from the store, then its address must
either have been sent from the store or generated in the CPU, and
so on. If, on the other hand, the address is generated in the CPU,
it must be generated either by a fixed rule [e.g., "add 1 to the program
counter" I or by an instruction that was sent through the tube, in
which case its address must have been sent ... and so on.

Surely there must be a less primitive way of making big changes
in the store than by pushing vast numbers of words back and forth
through the von Neumann bottleneck. Not only is this tube a literal
bottleneck for the data traffic of a problem, but, more importantly,
it is an intellectual bottleneck that has kept us tied to word-at-a-time
thinking instead of encouraging us to think in terms of the larger
conceptual units of the task at hand. Thus programming is basically
planning and detailing the enormous traffic of words through the
yon Neumann bottleneck, and much of that traffic concerns not signifi-
cant data itself but where to find it.

4
Von N e u m a n n

Languages
Conventional programming languages are basically high-level,

complex versions of the yon Neumann computer. Our thirty year
old belief that there is only one kind of computer is the basis of
our belief that there is only one kind of programming language, the
conventional--yon Neumann--language. The differences between
Fortran and Algol 68, although considerable, are less significant than
the fact that both are based on the programming style of the yon
Neumann computer. Although I refer to conventional languages as
"yon Neumann languages" to take note of their origin and style,
I do not, of course, blame the great mathematician for their complex-
ity. In fact, some might say that I bear some responsibility for that
problem.

Von Neumann programming languages use variables to imitate
the computer's storage cells: control statements elaborate its jump
and test instructionsl and assignment statements imitate its fetching,
storing, and arithmetic. The assignment statement is the yon Neumann

68 JOHN BACKUS

bottleneck of programming languages and keeps us thinking in word-
at-a-time terms in much the same way the computer's bottleneck
does.

Consider a typical program; at its center are a number of assignment
statements containing some subscripted variables. Each assignment
statement produces a one-word result. The program must cause these
statements to be executed many times, while altering subscript values,
in order to make the desired overall change in the store, since it must
be done one word at a time. The programmer is thus concerned
with the flow of words through the assignment bottleneck as he designs
the nest of control statements to cause the necessary repetitions.

Moreover, the assignment statement splits programming into two
worlds. The first world comprises the right sides of assignment
statements. This is an orderly world of expressions, a world that has
useful algebraic properties lexcept that those properties are often
destroyed by side effects). It is the world in which most useful com-
putation takes place.

The second world of conventional programming languages is the
world of statements. The primary statement in that world is the assign-
ment statement itself. All the other statements of the language exist
in order to make it possible to perform a computation that must be based
on this primitive construct: the assignment statement.

This world of statements is a disorderly one, with few useful
mathematical properties. Structured programming can be seen as
a modest effort .to introduce some order into this chaotic world, but
it accomplishes little in attacking the fundamental problems created
by the word-at-a-time von Neumann style of programming, with its
primitive use of loops, subscripts, and branching flow of control.

Our fixation on von Neumann languages has continued the primacy
of the von Neumann computer, and our dependency on it has made
non-yon Neumann languages uneconomical and has limited their
development. The absence of full-scale, effective programming styles
founded on non-von Neumann principles has deprived designers of
an intellectual foundation for new computer architectures. IFor a
brief discussion of that topic, see Section 15.1

Applicative computing systems' lack of storage and history Sensi-
tivity is the basic reason they have not provided a foundation for
computer design. Moreover, most applicative systems employ the
substitution operation of the lambda calculus as their basic operation.
This operation is one of virtually unlimited power, but its complete
and efficient realization presents great difficulties to the machine
designer. Furthermore, in an effort to introduce Storage and to improve
their efficiency on von Neumann computers, applicative systems
have tended to become engulfed in a large von Neumann system. For
example, pure Lisp is often buried in large extensions w i th many
von Neumann features. The resulting complex systems offer little
guidance to the machine designer.

A Functional Style and Its Algebra of Programs 69

5
Comparison

of von N e u m a n n
and Funct ional Programs

To get a more detailed picture of some of the defects of yon
Neumann languages, let us compare a conventional program for inner
product with a functional one written m a simple language to be detailed
further on.

5 .1

A y o n N e u m a n n Program
for Inner Product

c : = O

for i := 1 s tep 1 u n t i l n do

c := c + a[i] xb[i]

Several properties of this program are worth noting:

(a) Its statements operate on an invisible "state" according to
complex rules.

(b) It is not hierarchical. Except for the right side of the assignment
statement, it does not construct complex entities from simpler ones.
[Larger programs, however, often do. I

(c) It is dynamic and repetitive. One must mental ly execute it to
understand it.

(d) It computes word-at-a-time by repetition [of the assignment) and
by modification {of variable i).

(e) Part of the data, n, is in the program; thus it lacks generality
and works only for vectors of length n.

(f) It names its arguments; it can only be used for vectors a and
b. To become general it requires a procedure declaration. These involve
complex issues le.g., call-by-name versus call-by-value}.

(g) Its "housekeeping" operations are represented by symbols
in scattered places {in the for statement and the subscripts in the
assignment). This makes it impossible to consolidate housekeeping
operations, the most common of all, into single, powerful, widely useful
operators. Thus in programming those operations one must always start
again at square one, writing "for i := ..." and "for j :-- ..." followed
by assignment statements sprinkled with i's and j's.

70 JOHN BACKUS

5.2
A Functional Program

for Inner Product

I ~ 1 7 7

'lu*hlg

I , t ' l ' h l I t"

Def Innerproduct = (Insert +) o (ApplyToAll x) o Transpose

Or, in abbreviated form:

Def IP = (/+)o(o~x)oTrans.

Composition (o), Insert (/), and ApplyToAll (cO are hmetional
forms that combine existing functions to form new ones. Thus fog
is the function obtained by applying first g and then f, and a f is
the function obtained by applying f r o every member of the argument.
If we write f : x for the result of applying f to the object x, then we
can explain each step in evaluating Innerproduct applied to the pair
of vectors ((1, 2, 3), (6, 5, 4)) as follows:

IP:<(1,2,3>,(6,5,4))
Definition of IP
Effect of composition, o
Applying Transpose
Effect of ApplyToAll, c~
Applying ×
Effect of Insert, /
Applying +
Applying + again

:=~ (/+)o (a X)oTrans: ((1,2,3), (6,5,4))
=~ (/+):((c~x):Trans: ((1,2,3), (6,5,4))))
==~ (/ +) : ((a x) : ((1,6), (2,5), (3,4)))

(/+) : (x : (1 ,6) , x : (2,5), x : (3,4))
(/+) : (6,10,12)
+ : (6, + : (10,12>)
+ : (6,22)

==~ 28

Let us compare the properties of this program with those of the von
Neumann program.

(a) It operates only on its arguments. There are no hidden states
or complex transition rules. There are only two kinds of rules, one
for applying a function to its argument, the other for obtaining the
function denoted by a functional form such as composition, fog, or
ApplyToAll, af, when one knows the f u n c t i o n s f a n d g, the parameters
of the forms.

(b) It is hierarchical, being built from three simpler functions (+,
×, Trans) and three functional forms fog, af and/ f .

(c) It is static and nonrepetitive, in the sense that its structure is
helpful in understanding it without mentally executing it. For example,
if one understands the action of the forms fog and o~f and of the func-
tions x and Trans, then one understands the action of cxx and of
(a x) oTrans, and so on.

(d) It operates on whole conceptual units, not words; it has three
steps; no step is repeated.

(e) It incorporates no data; it is completely general; it works for any
pair of conformable vectors.

A Functional Style and Its Algebra of Programs 71

(f) It does not name its arguments; it can be applied to any pair of
vectors without any procedure declaration or complex substitution
rules.

(g) It employs housekeeping forms and functions that are generally
useful in many other programs; in fact, only + and x are not con-
cerned with housekeeping. These forms and functions can combine
with others to create higher level housekeeping operators.

Section 14 sketches a kind of system designed to make the above
functional style of programming available in a history-sensitive system
with a simple framework, but much work remains to be done before
the above applicative style can become the basis for elegant and
practical programming languages. For the present, the above comparison
exhibits a number of serious flaws in von Neumann programming
languages and can serve as a starting point in an effort to account
for their present fat and flabby condition.

6
Language Frameworks

versus
Changeable Parts

Let us distinguish two parts of a programming language. First,
its framework which gives the overall rules of the system, and second,
its changeable parts, whose existence is anticipated by the framework
but whose particular behavior is not specified by it. For example,
the for statement, and almost all other statements, are part of Algol's
framework but library functions and user-defined procedures are
changeable parts. Thus the framework of a language describes its fix-
ed features and provides a general environment for its changeable
features.

Now suppose a language had a small framework which could
accommodate a great variety of powerful features entirely as changeable
parts. Then such a framework could support many different features
and styles without being changed itself. In contrast to this pleasant
possibility, yon Neumann languages always seem to have an immense
framework and very limited changeable parts. What causes this to
happen? The answer concerns two problems of von Neumann
languages.

The first problem results from the von Neumann style of word-at-
a-time programming, which requires that words flow back and forth
to the state, just like the flow through the yon Neumann bottleneck.
Thus a yon Neumann language must have a semantics closely coupled
to the state, in which every detail of a computation changes the state.
The consequence of this semantics closely coupled to states is that every
detail of every feature must be built into the State and its transition rules.

72 JOHN BACKUS

Thus every feature of a v o n Neumann language must be spelled
out in stupefying detail in its framework. Furthermore, many complex
features are needed to prop up the basically weak word-at-a-time
style. The result is the inevitable rigid and enormous framework of a
von Neumann language.

I ~ 7 7

[I u i i n g
/~ %%r~1 | ' | |

| , t ' t ' l l l r t "

7
Changeable Parts

and Combining Forms
The second problem of yon Neumann languages is that their

changeable parts have so little expressive power. Their gargantuan
size is eloquent proof of this; after all, if the designer knew that all
those complicated features, which he now builds into the framework,
could be added later on as changeable parts, he would not be so eager
to build them into the framework.

Perhaps the most important element in providing powerful
changeable parts in a language is the availability of combining forms
that can be generally used to build new procedures from old ones.
Von Neumann languages provide only primitive combining forms,
and the yon Neumann framework presents obstacles to their full
use.

One obstacle to the use of combining forms is the split between
the expression world and the statement world in yon Neumann langu-
ages. Functional forms naturally belong to the world of expressions;
but no matter how powerful they are they can only build expressions
that produce a one-word result. And it is in the statement world that
these one-word results must be combined into the overall result.
Combining single words is not what we really should be thinking
about, but it is a large part of programming any task in yon Neumann
languages. To help assemble the overall result from single words
these languages provide some primitive combining forms in the state-
ment world--the for, while, and if-then-else statements--but the
split between the two worlds prevents the combining forms in either
world from attaining the full power they can achieve in an undivided
world.

A second obstacle to the u ~ of combining forms in yon Neumann
languages is their use of elaborate naming conventions, which are
further complicated by the substitution rules required in calling pro-
cedures. Each of these requires a complex mechanism to be built into
the framework so that variables, subscripted variables, pointers, file
names, procedure names, call-by-value formal parameters, call-by-name
formal parameters, and so on, can all be properly interpreted. All
these names, conventions, and rules interfere with the use of simple
combining forms.

A Functional Style and Its Algebra of Programs 73

8
APL versus

Word-at-a-Time Programming
Since I have said so much about word-at-a-time programming, I

must now say something about APL [12]. We owe a great debt to
Kenneth Iverson for showing us that there are programs that are
neither word-at-a-time nor dependent on lambda expressions, and
for introducing us to the use of new functional forms. And since
APL assignment statements can store arrays, the effect of its functional
forms is extended beyond a single assignment.

Unfortunately, however, APL still splits programming into a world
of expressions and a world of statements. Thus the effort to write
one-line programs is partly motivated by the desire to stay in the
more orderly world of expressions. APL has exactly three functional
forms, called inner product, outer product, and reduction. These are
sometimes difficult to use, there are not enough of them, and their
use is confined to the world of expressions.

Finally, APL semantics is still too closely coupled to states. Conse-
quently, despite the greater simplicity and power of the language, its
framework has the complexity and rigidity characteristic of yon
Neumann languages.

9
Von N e u m a n n Languages Lack
Useful Mathemat ica l Properties

So far we have discussed the gross size and inflexibility of yon
Neumann languages; another important defect is their lack of useful
mathematical properties and the obstacles they present to reasoning
about programs. Although a great amount of excellent work has been
published on proving facts about programs, yon Neumann languages
have almost no properties that are helpful in this direction and have
many properties that are obstacles (e.g., side effects, aliasing].

Denotational semantics [23] and its foundations [20, 21] provide an
extremely helpful mathematical understanding of the domain and func-
tion spaces implicit in programs. When applied to an applicative
language (such as that of the "recursive programs" of [16]}, its founda-
tions provide powerful tools for describing the language and for proving
properties of programs. When applied to a yon Neumann language,
on the other hand, it provides a precise semantic description and is
helpful in identifying trouble spots in the language. But the complexity
of the language is mirrored in the complexity of the description, which
is a bewildering collection of productions, domains, functions, and equa-
tions that is only slightly more helpful in proving facts about programs
than the reference manual of the language, since it is less ambiguous.

74 JOHN BACKUS

Axiomatic semantics [11] precisely restates the inelegant properties
of von Ne umann programs (i.e., t ransformations on states) as transfor-
mations on predicates. The word-at-a-time, repetitive game is not
thereby changed, mere ly the playing field. The complexity of this
axiomatic game of proving facts about von Neumann programs makes
the successes of its practi t ioners all the more admirable. Their success
rests on two factors in addition to their ingenuity: First, the game
is restricted to small, weak subsets of full von Neumann languages
that have states vastly simpler than real ones. Second, the new playing
field (predicates and their transformations) is richer, more orderly
and effective than the old (states and their transformations). But restrict-
ing the game and transferring it to a more effective domain does
not enable it to handle real programs {with the necessary complexities
of procedure calls and aliasing), nor does it eliminate the clumsy
propert ies of the basic von Neumann style. As axiomatic semantics
is extended to cover more of a typical von Neumann language, it
begins to lose its effectiveness with the increasing complexity that is
required.

Thus denotational and axiomatic semantics are descriptive for-
malisms whose foundat ions embody elegant and powerful concepts;
but using them to describe a v o n Neumann language cannot produce
an elegant and powerful language any more than the use of elegant
and modern machines to build an Edsel can produce an elegant and
modern car.

In any case, proofs about programs use the language of logic, not
the language of programming. Proofs talk about programs but cannot
involve them directly since the axioms of von Neumann languages
are so unusable. In contrast, many ordinary proofs are derived by
algebraic methods. These methods require a language that has certain
algebraic properties. Algebraic laws can then be used in a rather
mechanical way to t ransform a problem into its solution. For example,
to solve the equation

a x + b x - - a + b

for x (given that a+b ~ 0), we mechanical ly apply the distributive,
identity, and cancellation laws, in succession, to obtain

(a + b)x = a + b

(a + b)x = (a + b) l

X---- 1.

Thus we have proved that x -- 1 without leaving the "language" of
algebra. Von Neumann languages, with their grotesque syntax, offer
few such possibilities for t ransforming programs.

As we shall see later, programs can be expressed in a language that
has an associated algebra. This algebra can be used to t ransform pro-

I ~) 7 7

I u r | ng
A~v~H'd
I.el lune

A Functional Style and Its Algebra of Programs 75

grams and to solve some equations whose "unknowns" are programs,
in much the same way one solves equations in high school algebra.
Algebraic transformations and proofs use the language of the programs
themselves, rather than the language of logic, which talks about
programs.

10
W h a t Are the Al ternat ives

to v o n N e u m a n n Languages?
Before discussing alternatives to yon Neumann languages, let me

remark that I regret the need for the above negative and not very precise
discussion of these languages. But the complacent acceptance most of
us give to these enormous, weak languages has puzzled and disturbed
me for a long time. I am disturbed because that acceptance has con-
sumed a vast effort toward making yon Neumann languages fatter that
might have been better spent in looking for new structures. For this
reason I have tried to analyze some of the basic defects of conventional
languages and show that those defects cannot be resolved unless we
discover a new kind of language framework.

In seeking an alternative to conventional languages we must first
recognize that a system cannot be history sensitive (permit execution
of one program to affect the behavior of a subsequent one) unless the
system has some kind of state (which the first program can change and
the second can access). Thus a history-sensitive model of a computing
system must have a state-transition semantics, at least in this weak
sense. But this does no t mean that every computation must depend
heavily on a complex state, with many state changes required for each
small part of the computation (as in yon Neumann languages).

To illustrate some alternatives to von Neumann languages, I propose
to sketch a class of history-sensitive computing systems, where each
system: (a) has a loosely coupled state-transition semantics in which
a state transition occurs only once in a major computation; (b) has
a simply structured state and simple transition rules; (c) depends
heavily on an underlying applicative system both to provide the basic
programming language of the system and to describe its state transitions.

These systems, which I call applicative state transition (or AST)
sys tems , are described in Section 14. These simple systems avoid

many of the complexities and weaknesses of yon Neumann languages
and provide for a powerful and extensive set of changeable parts.
However, they are sketched only as crude examples of a vast area
of non-von Neumann systems with various attractive properties. I
have been studying this area for the past three or four years and have
not yet found a satisfying solution to the many conflicting requirements
that a good language must resolve. But I believe this search has indicated
a useful approach to designing non-yon Neumann languages.

76 JOHN BACKUS

This approach involves four elements, which can be summarized
as follows.

(a) A functional style of programming without variables. A simple,
informal functional programming CFPI system is described. It is
based on the use of combining forms of FP programs. Several programs
are given to illustrate functional programming.

(b) An algebra of functional programs. An algebra is described whose
variables denote FP functional programs and whose "operations"
are FP functional forms, the combining forms of FP programs. Some
laws of the algebra are given. Theorems and examples are given that
show how certain function expressions may be transformed into
equivalent infinite expansions that explain the behavior of the function.
The FP algebra is compared with algebras associated with the classical
applicative systems of Church and Curry.

(c) A formal functional programming system. A formal IFFPI system
is described that extends the capabilities of the above informal FP
systems. An FFP system is thus a precisely defined system that pro-
vides the ability to use the functional programming style of FP systems
and their algebra of programs. FFP systems can be used as the basis
for applicative state transition systems.

(d) Applicative state transition systems. As discussed above.

The rest of the paper describes these four elements and ends with
a summary of the paper.

11
Functional

Programming Systems
{FP Systems}

11.1

I n t r o d u c t i o n

In this section we give an informal description of a class of simple
applicative programming systems called functional programming (FP}
systems, in which "programs" are simply functions without variables.
The description is followed by some examples and by a discussion of
various properties of FP systems.

An FP system is founded on the use of a fixed set of combining forms
called functional forms. These, plus simple definitions, are the only
means of building new functions from existing ones; they use no
variables or substitution rules, and they become the operations of an
associated algebra of programs. All the functions of an FP system are
of one type: they map objects into objects and always take a single
argument.

A Functional Style and Its Algebra of Programs 77

In contrast, a lambda-calculus-based system is founded on the
use of the lambda expression, with an associated set of substitution
rules for variables, for building new functions. The lambda expression
[with its substitution rules) is capable of defining all possible computable
functions of all possible types and of any number of arguments.
This freedom and power has its disadvantages as well as its obvious
advantages. It is analogous to the power of unrestricted control
statements in conventional languages: with unrestricted freedom comes
chaos. If one constantly invents new combining forms to suit the
occasion, as one can in the lambda calculus, one will not become
familiar with the style or useful properties of the few combining forms
that are adequate for all purposes. Just as structured programming
eschews many control statements to obtain programs with simpler
structure, better properties, and uniform methods for understanding
their behavior, so functional programming eschews the lambda expres-
sion, substitution, and multiple function types. It thereby achieves
programs built with familiar functional forms with known useful
properties. These programs are so structured that their behavior can
often be understood and proven by mechanical use of algebraic tech-
niques similar to those used in solving high school algebra problems.

Functional forms, unlike most programming constructs, need not
be chosen on an ad hoc basis. Since they are the operations of an
associated algebra, one chooses only those functional forms that not
only provide powerful programming constructs, but that also have
attractive algebraic properties: one chooses them to maximize the
strength and utility of the algebraic laws that relate them to other func-
tional forms of the system.

In the following description we shall be imprecise in not distin-
guishing between (a) a function symbol or expression and (b) the
function it denotes. We shall indicate the symbols and expressions
used to denote functions by example and usage. Section 13 describes
a formal extension of FP systems (FFP systems); they can serve to clarify
any ambiguities about FP systems.

11.2
Description

An FP system comprises the following:

(1) a set O of objects;
(2) a set F of functions f that map objects into objects;

(3) an operation, application;
(4) a set F of functional forms; these are used to combine existing

functions, or objects, to form new functions in F;

(5) a set D of definitions that define some functions in F and assign a
name to each.

78 JOHN BACKUS

What follows is an informal descript ion of each of the above entities
wi th examples.

11.2.1 Objec t s , O. An object x is ei ther an atom, a sequence
(x~ x.) whose elements x~ are objects, or ± ("bo t tom" or "un-
defined"). Thus the choice of a set A of a toms de te rmines the set
of objects. We shall take A to be the set of nonnul l strings of capital
letters, digits, and special symbols not used by the notat ion of the
FP system. Some of these strings belong to the class of a toms called
"numbers : ' The a tom ¢ is used to denote the emp ty sequence and
is the only object which is both an a tom and a sequence. The a toms
T and F are used to denote "true" and "false."

There is one impor tan t constraint in the construct ion of objects:
if x is a sequence with ± as an element , then x = ±. That is, the
"sequence constructor" is "±-preserving." Thus no proper sequence
has ± as an element .

Examples of objects

± 1.5 q5 AB3 (AB, 1,2.3) (A,((B),C),D) (A, ±)= ±

11.2.2 App l i ca t i on . An FP system has a single operation, applica-
tion. If f is a funct ion and x is an object, t h e n f : x is an application and
denotes the object which is the result of applying f to x. f is the operator
of the applicat ion and x is the operand.

Examples o f applications

+ : (1 , 2) = 3 tl:(A,B,C) = (B,C) i:(A,B,C) = A 2:(A,B,C) = B

11.2.3 F u n c t i o n s , E All functions f i n F map objects into objects
and are bottom-preserving: f : ± = ±, for all f in E Every function in F
is ei ther primitive, that is, supplied with the system, or it is defined
Isee below I, or it is a functional form {see below}.

It is somet imes useful to distinguish be tween two cases in which
f :x = ±. If the computa t ion f o r f ; x terminates and yields the object ±,
we say f is undefined at x, that is, f te rminates but has no meaningful
value at x. Otherwise we say f is nonterminating at x.

Examples of primitive functions. Our intention is to provide FP
sys tems with widely useful and powerfu l pr imit ive funct ions ra ther
than weak ones that could then be used to define useful ones. The

A Functional Style and Its Algebra of Programs 79

fo l lowing examples def ine some typical pr imi t ive funct ions , m a n y of
w h i c h are used in later examples of p rograms . In the fo l lowing defini-
t ions we use a var ian t of M c C a r t h y ' s condi t iona l express ions [17]; thus

we wri te

p t - ~ e l ; ... ; pn--~en; en+l

ins tead of M c C a r t h y ' s express ion

(p i n e 1 pn-~en, T-~ en+ l).

The fo l lowing def ini t ions are to hold for all objects x, xi, y, Yi, z, zi.

Selec tor f u n c t i o n s

l : x - - - x = (xl X n) ~ X l ; _L

and for a ny posi t ive in teger s

s : x ~ x = (x~ xn) & n _> s ~ xs; ±

Thus, for example: 3:(A,B,C) = C and 2: (A) = ±. Note that the func-
t ion symbo l s 1, 2, etc. are dist inct f r o m the a toms 1, 2, etc.

Tail

t l : x - - - x = (xl) ~ ¢; x = (xl xn) & n > 2 ~ (x 2 Xn); ±

I d e n t i t y

i d : x - x

A t o m

a t o m : x --- x is an a t o m ~ T ; x #: ± ~ F ; ±

Equals

e q : x - - - x = (y,z) & y = z ~ T; x = (y,z) & y ~ z - ~ F ; _L

N u l l

n u l l : x - x = ¢ ~ T; x-~ ± ~ F ; ±

Reverse

r e v e r s e : x ~ x = ¢ ~ q ~ ; x = (x l X n) ~ (x , , ... , x l) ; -l_

D i s t r i b u t e f r o m left; d i s t r i bu t e f r o m r igh t

d i s t l : x ~ x = (y , c h) ~ c k ; x = (y , (z ~ Zn))~ ((y , z~) (Y,Zn)); _1_

dis tr :x--=x=(qS,y)~O0; x = ((y ~ Yn), Z)~((Y~,Z) (Yn ,Z)) ;±

80 JOHN BACKUS

Length

l e n g t h : x ~ - x = (x l X n) ~ n ; x = ~ 0 ; ±

Add, subtract, multiply, and divide

+ :x ~ x = (y , z) & y,z are n u m b e r s ~ y + z ; ±

- :x ~ x = (y,z) & y,z are n u m b e r s ~ y - z ; ±

× :x ~-x=(y,z) & y,z are n u m b e r s ~ y × z ; ±

+ :x ~ x = (y , z) & y,z are n u m b e r s ~ y + z ; ± (where y + 0 = ±)

Transpose

t r a n s : x ~-x=(~b ~ b) ~ b ; x=(x l Xn)~(yl Ym); _L

w h e r e

X i = (X i l Xim) and yj = (xl} Xnj), 1 < i < n , 1 < j < m.

And, or, not

a n d : x - - - x = (T , T) ~ T; x=(T ,F) V x = (F , T) V x = (F ,F)~F; ±

etc.

Append left; append right

apnd l : x~ -x=(y ,O)~(y) ; x=(y,(z~ Zn))~(y,z~ zn); ±

a p n d r :x -= x = (~b,z) ~ (z); x = ((Yl yn) ,z) ~ (Yl Yn,Z); ±

Right selectors; right tail

l r : x ~ x = (x l xn)~Xn; ±

2 r : x - - - x = (x l Xn) & n > 2 ~ X n - l ; ±

etc.

t l r : x - x = (x ~) ~ 6 ; x = (x l X n) & n > 2 ~ (x ~ x n - 1) ; ±

Rotate left; rotate right

ro t l : x ~ x = 4 ~ , ~ ; x=(x l) -~(x l) ;

x = (x l Xn) & n > _ 2 ~ (x 2 Xn,Xl); ±

etc.

11 .2 .4 F u n c t i o n a l f o r m s , E A func t iona l f o r m is an express ion
deno t ing a funct ion; that func t ion de pe nds on the func t ions or objects
w h i c h are the parameters of the expression. Thus, for example, if f and

A Functional Style and Its Algebra of Programs 81

g are any functions, then fog is a functional form, the composition of
f a n d g , fand g are its parameters, and it denotes the function such that,
for any object x,

(fog) :x = f: (g :x).

Some functional forms may have objects as parameters. For example,
for any object x, £ is a functional form, the constant funct ion of x, so
that for any object y

~ : y - y ± ~ ± ; x.

In particular, i is the e v e r y w h e r e - ± function.
Below we give some functional forms, many of which are used later

in this paper. We use p, f, and g with and without subscripts to denote
arbitrary functions; and x, x, xn, y as arbi t rary objects. Square
brackets [...] are used to indicate the functional form for construction,
which denotes a function, whereas pointed brackets (...) denote
sequences, which are objects. Parentheses are used both in particular
functional forms (e.g., in condition) and generally to indicate grouping.

Composition

(f o g) : x ~ g : (g : x)

Construction

[A , fn] : X " (f , : x f n :X)

(Recall that since (. . . . ±) = ± and all functions are ±- preserv-
ing, so is [f , fn].)

Condition

(p ~ f ; g) : x - - - (p : x) = T ~ f : x ; (p : x) = F ~ g : x ; ±

Conditional expressions (used outside of FP systems to describe their
functions) and the functional form condition are both identified by " ~ ".
They are quite different although closely related, as shown in the above
definitions. But no confusion should arise, since the elements of a
conditional expression all denote values, whereas the elements of
the functional form condition all denote functions, never values. When
no ambiguity arises we omit right-associated parentheses; we write,
for example,

p , ~ A ; p 2 ~ f z ; g for (pl---~A; (p2---~A; g)).

82 JOHN BACKUS

1 9 7 7

'1 , , , ' i , l g

I , f l ' l u I't"

Constant (Here x is an object parameter.}

x :y -= y = _l_~_J_; x

Insert

/f:x ~ X = (X l S ~ X l ;

X=(Xl Xn) & n > 2 ~ f : (x l , /f: (x2 XnS); _k

If f has a unique right unit uf ~ _1_, where f : (x,uf5 E {x, _1_} for all
objects x, then the above definition is extended : /f: 4~ = uf. Thus

/ + : (4 , 5 , 6) = + : (4 , + : (5 , / +:(65}) = + : (4 , +:(5,655 =15

/ + : ~ = 0

Apply to all

af:x ~ x = ~b~6; x = (x , xnS~(f : x , f:Xn);-l-

Binary to unary (x is an object parameter}

(b u f x) :y ~-f: (x,y)

Thus

(bu + 1) : x = 1 + x

While

(w h i l e p f) : x ~ - p : x = T ~ (w h i l e p f) : (f : x) ; p : x = F ~ x ; _1_

The above functional forms provide an effective method for com-
puting the values of the functions they denote (if they terminate}
provided one can effectively apply their funct ion parameters.

11.2.5 Def in i t ions . A definition in an FP system is an expression
of the form

Def l e t

where the left side l is an unused function symbol and the right
side r is a functional form (which may depend on l}. It expresses

A Functional Style and Its Algebra of Programs 83

the fact that the symbol l is to denote the funct ion given by r. Thus
the definition D e f lastl - 1 °reverse defines the function lastl that pro-
duces the last e lement of a sequence {or -LI. Similarly,

D e f last --- n u l l o t l ~ l ; lastotl

defines the funct ion last, which is the same as lastl. Here in detail
is h o w the definit ion would be used to compute last: (1,2):

last: (1,2) =
definition of last =-~ (nullotl--.l; last otl):(1,2)
action of the form (p~ f ;g) ~ lastotl:(1,2)

since nullotl: (1,2) = null: (2) = F
action of the form fog ~ last:(tl:(1,2))
definition of the primitive tail =~. last : (2)
definition of last =-~ (null otl ~ 1; last otl) : (2)
action of the form (p~ f ;g) =~. 1:(2)

since null otl : (2) = null: ~ = T
definition of selector 1 =~. 2

The above illustrates the s imple rule: to apply a def ined symbol ,
replace it by the right side of its definition. Of course, some definit ions
m a y define nonte rmina t ing functions. A set D of definit ions is well
formed if no two left sides are the same.

11.2 .6 S e m a n t i c s . It can be seen f rom the above that an FP
sys tem is de te rmined by choice of the following sets: (a) The set
of a toms A Iwhich de te rmines the set of objects}. (b) The set of
pr imit ive funct ions P. (c) The set of funct ional forms F. (d) A well
fo rmed set of definitions D. To unders tand the semant ics of such a
sys tem one needs to k n o w how to compute f : x for any funct ion f
and any object x of the system. There are exactly four possibilities for f :

(1) f is a pr imi t ive function;

(2) f is a funct ional form;

(3) there is one definit ion in D, D e f f - = r; and

(4) none of the above.

I f f i s a pr imit ive function, then one has its description and knows how
to apply it. If f is a funct ional form, then the descript ion of the fo rm
tells how to c o m p u t e f : x in t e rms of the pa rame te r s of the form, which
can be done by fur ther use of these rules. I f f i s defined, D e f f ~ - r, as
in (3), then to f i n d f : x one computes r:x, which can be done by fur ther
use of these rules. If none of these, then f : x ~ ±. Of course, the use
of these rules m a y not te rmina te for s o m e f a n d s o m e x, in which case
we assign the value f : x ---±.

84 JOHN BACKUS

1 1 . 3

Examples
of Functional Programs

The following examples illustrate the functional p rogramming style.
Since this style is unfamil iar to most readers, it may cause confusion
at first; the impor tan t point to r e m e m b e r is that no par t of a funct ion
definition is a result itself. Instead, each part is a function that mus t
be applied to an a rgument to obtain a result.

1 ~ 7 7

' l u r i n g

A ~ a r d

] , t ' (' l I I I'l"

11.3.1 Factorial

D e f I ~- e q 0 ~ l ; xo[id , !osub l]

where

D e f eq0 --- eqo[id,6]

D e f sub l --- - o[id,]]

Here are some of the in termedia te expressions an FP sys tem would
obtain in evaluating !:2:

I:2 = ~ . (e q 0 - o j ; x o [i d , ! o s u b l]) : 2 ~ x o [i d , ! o s u b l] : 2

=~" x : (i d : 2 , ! o s u b l : 2) : ~ " x : (2 , ! : l)

=-~ x : (2 , x : (1 , !:0))

=~. ×:(2,×:(1,1:0))==~.×:(2,×:(1,1)) =~-×: (2 ,1)=~-2 .

In Section 12 we shall see how theorems of the algebra of FP programs
can be used to prove that ! is the factorial function.

11.3.2 I n n e r P r o d u c t . We have seen earlier how this definit ion
works.

D e f IP -~ (/+)o(o~X)otrans

11.3.3 M a t r i x M u l t i p l y . This matrix multiplication program yields
the product of any pair (re,n) of conformable matrices, where each
matr ix m is represented as the sequence of its rows:

m = (ml m ,)

where

mi = (rnil mis) for i = 1 r.

A Functional Style and Its Algebra of Programs 85

De f M M ~ (aaIP)o(adist l)odistro[1, trans 02]

The program MM has four steps, reading from right to left; each is
applied in turn, beginning with [1, transo2], to the result of its pre-
decessor. If the argument is (re,n), then the first step yields

(m,n'/

where n' = t rans :n . The second step yields

((m,n') , . . . , (mr,n')),

where the m~ are the rows of m. The third step, o~distl, yields

(distl: (ml, n') , distl: (mr,n')) = (Pl P r)

where

Pi = distl:(mi,n') = ((mi,nl') (mi,ns')) for i -- 1 r

and nj' is the j th co lumn of n [the j th row of n' I. Thus Pi, a sequence
of row and column pairs, corresponds to the ith product row. The
operator o~aIP, or o~(odP), causes cAP to be applied to each Pi, which
in turn causes IP to be applied to each row and column pair in each
Pi. The result of the last step is therefore the sequence of rows com-
prising the product matrix. If either matr ix is not rectangular, or if
the length of a row of m differs f rom that of a co lumn of n, or if
any e lement of m or n is not a number, the result is _l_.

This program MM does not name its arguments or any intermediate
results; contains no variables, no loops, no control s tatements nor
procedure declarations; has no initialization instructions; is not word-
at-a-time in nature; is hierarchically constructed f rom simpler com-
ponents; uses generally applicable housekeeping forms and operators
[e.g., off, distl, distr, trans); is perfect ly general; yields ± w h e n e v e r its
argument .is inappropriate in any way; does not constrain the order of
evaluation unnecessarily [all applications of IP to row and column pairs
can be done in parallel or in any order); and, using algebraic
laws [see below I, can be t ransformed into more "efficient" or into
more "explanatory" programs [e.g., one that is recursively defined I.
None of these propert ies hold for the typical von N eu m an n matr ix
multiplication program.

Although it has an unfamiliar and hence puzzling form, the program
MM describes the essential operations of matrix multiplication without
overdetermining the process or obscuring parts of it, as most programs
do; hence many straightforward programs for the operat ion can be
obtained from it by formal transformations. It is an inherent ly ineffi-
cient program for von Neumann computers [with regard to the use of

86 JOHN BACKUS

space), but efficient ones can be derived from it and realizations of
FP systems can be imagined that could execute MM without the prod-
igal use of space it implies. Efficiency questions are beyond the scope
of this paper; let me suggest only that since the language is
so simple and does not dictate any binding of lambda-type variables
to data, there may be bet ter opportunit ies for the system to do some
kind of "lazy" evaluation [9, 10] and to control data management
more efficiently than is possible in lambda-calculus-based systems.

1~)77
'1 i , r i , l g
/ltwar(I
I,e~ lure

1 1 . 4

Remarks
about FP Systems

11.4.1 F P Sys tems as P r o g r a m m i n g Languages . FP systems
are so minimal that some readers may find it difficult to view them
as programming languages. Viewed as such, a f u n c t i o n f i s a program,
an object x is the contents of the store, and f:x is the contents of
the store after program f is activated with x in the store. The set of
definitions is the program library. The primitive functions and the
functional forms provided by the system are the basic statements
of a particular programming language. Thus, depending on the choice
of primitive functions and functional forms, the FP framework provides
for a large class of languages with various styles and capabilities.
The algebra of programs associated with each of these depends on
its particular set of functional forms. The primitive functions, functional
forms, and programs given in this paper comprise an effort to develop
just one of these possible styles.

11.4.2 L i m i t a t i o n s of F P Systems. FP systems have a number
of limitations. For example, a given FP system is a fixed language;
it is not history sensitive: no program can alter the library of programs.
It can treat input and output only in the sense that x is an input and
f:x is the output. If the set of primitive functions and functional forms
is weak, it may not be able to express every computable function.

An FP system cannot compute a program since function expressions
are not objects. Nor can one define new functional forms within an
FP system. (Both of these limitations are removed in formal functional
programming (FFP} systems in which objects "represent" func t ions .)
Thus no FP system can have a function, apply, such that

apply : (x,y) -= x: y

because, on the left, x is an object, and, on the right, x is a function.
(Note that we have been careful to keep the set of function symbols
and the set of objects distinct: thus 1 is a function symbol, and 1 is an
object.)

A Functional Style and Its Algebra of Programs 87

The primary limitation of FP systems is that they are not history
sensitive. Therefore they must be extended somehow before they can
become practically useful. For discussion of such extensions, see the
sections on FFP and AST systems (Sections 13 and 14).

11.4.3 Expressive Power of FP Systems. Suppose two FP systems,
FP1 and FP2, both have the same set of objects and the same set
of primitive functions, but the set of functional forms of FP 1 properly
includes that of FP2. Suppose also that both systems can express
all computable functions on objects. Nevertheless, we can say that
FP~ is more expressive than FP2, since every function expression
in FP2 can be duplicated in FP~, but by using a functional form not
belonging to FP2, FP~ can express some functions more directly and
easily than FP2.

I believe the above observation could be developed into a theory
of the expressive power of languages in which a language A would
be more expressive than language B under the following roughly stated
conditions. First, form all possible functions of all types in A by
applying all existing functions to objects and to each other in all
possible ways until no new function of any type can be formed. (The
set of objects is a type; the set of continuous functions [T ~ U] from
type T to type U is a type. I f f , ~ [T---, U] and t E T, thenf t in U can
be formed by applying f to t.) Do the same in language B. Next, com-
pare eachAype in A to the corresponding type in B. If, for every type,
A's type includes B's corresponding type, then A is more expressive than
B {or equally expressive I. If some type of A's functions is incomparable
to B's, then A and B are not comparable in expressive power.

11.4.4 Advantages of FP Systems. The main reason FP systems
are considerably simpler than either conventional languages or lambda-
calculus-based languages is that they use only the most elementary fixed
naming system {naming a function in a definitionl with a simple fixed
rule of substituting a function for its name. Thus they avoid the com-
plexities both of the naming systems of conventional languages and
of the substitution rules of the lambda calculus. FP systems permit the
definition of different naming systems (see Sections 13.3.4 and 14.7}
for various purposes. These need not be complex, since many programs
can do without them completely. Most importantly, they treat names
as functions that can be combined with other functions without special
treatment.

FP systems offer an escape from conventional word-at-a-time
programming to a degree greater even than APL [12] {the most suc-
cessful attacl~ on the problem to date within the von Neumann
framework) because they provide a more powerful set of functional
forms within a unified world of expressions. They offer the opportuni-
ty to develop higher level techniques for thinking about, manipulating,
and writing programs.

88 JOHN BACKUS

12
The Algebra
of Programs

for FP Systems

12.1
Introduction

The algebra of the programs described below is the work of an
amateur in algebra, and I want to show that it is a game amateurs
can profitably play and enjoy, a game that does not require a deep
understanding of logic and mathematics. In spite of its simplicity, it
can help one to understand and prove things about programs in a
systematic, rather mechanical way.

So far, proving a program correct requires knowledge of some
moderately heavy topics in mathematics and logic: properties of
complete partially ordered sets, continuous functions, least fixed
points of functionals, the first-order predicate calculus, predicate
transformers, weakest preconditions, to mention a few topics in a
few approaches to proving programs correct. These topics have been
very useful for professionals who make it their business to devise
proof techniques; they have published a lot of beautiful work on
this subject, starting with the work of McCarthy and Floyd, and, more
recently, that of Burstall, Dijkstra, Manna and his associates, Milner,
Morris, Reynolds, and many others. Much of this work is based on
the foundations laid down by Dana Scott (denotational semantics) and
C. A. R. Hoare (axiomatic semantics). But its theoretical level places it
beyond the scope of most amateurs who work outside of this specialized
field.

If the average programmer is to prove his programs correct, he will
need much simpler techniques than those the professionals have so far
put forward. The algebra of programs below may be one starting point
for such a proof discipline and, coupled with current work on algebraic
manipulation, it may also help provide a basis for automating some of
that discipline.

One advantage of this algebra over other proof techniques is that
the programmer can use his programming language as the language
for deriving proofs, rather than having to state proofs in a separate
logical system that merely talks about his programs.

At the heart of the algebra of programs are laws and theorems that
state that one function expression is the same as another. Thus the law
[f,g] oh ~. [foh, gob] says that the construction o f f and g (composed
with h) is the same function as the construction of (fcomposed with
h) and (g composed with h) no matter what the functions f, g, and h
are. Such laws are easy to understand, easy to justify, and easy and
powerful to use. However, we also wish to use such laws to solve

I 9 7 7
'1 l i t ' h a g

A w ; H d

L e (l U l l t •

A Functional Style and Its Algebra of Programs 89

equations in which an "unknown" function appears on both sides
of the equation. The problem is that if f satisfies some such equation,
it will often happen that some extension f ' of f will also satisfy the
same equation. Thus, to give a unique meaning to solutions of such
equations, we shall require a foundation for the algebra of programs
{which uses Scott's notion of least fixed points of continuous functionals)
to assure us that solutions obtained by algebraic manipulation are
indeed least, and hence unique, solutions.

Our goal is to develop a foundation for the algebra of programs
that disposes of the theoretical issues, so that a programmer can use
simple algebraic laws and one or two theorems from the foundations
to solve problems and create proofs in the same mechanical style
we use to solve high-school algebra problems, and so that he can
do so without knowing anything about least fixed points or predicate
transformers.

One particular foundational problem arises: given equations of the
form

f m po~qo; ... ; p i~q i ; El(f) (1)

where the pi's and qi's are functions not involving f and Ei(f) is a
function expression involving f, the laws of the algebra will often permit
the formal "extension" of this equation by one more "clause" by deriving

Ei(f) "~Pi+l -'-~qi+l; Ei+l(f) (2)

'which, by replacing El(f) in (1) by the right side of (2), yields

f . ~ p o ~ q o ; ... ; Pi+l-*qi+l; Ei+l(f). (3)

This formal extension may go on without limit. One question the
foundations must then answer is: when can the least f satisfying (1)
be represented by the infinite expansion

f ~ p o ~ q o ; ... ; p n ~ q n ; ... (4)

in which the final clause involvingfhas been dropped, so that we now
have a solution whose right side is free off 's? Such solutions are helpful
in two ways: first, they give proofs of "termination" in the sense that
(4) means that f :x is defined if and only if there is an n such that, for
every i less than n, p i : x = F and pn:X = T and qn:X is defined.
Second, (4) gives a case-by-case description of f that can often clarify
its behavior.

The foundations for the algebra given in a subsequent section
are a modest start toward the goal stated above. For a limited class
of equations its "linear expansion theorem" gives a useful answer
as to when one can go from indefinitely extendable equations like (1)
to infinite expansions like (4). For a larger class of equations, a more

90 JOHN BACKUS

general "expansion theorem" gives a less helpful answer to similar
questions. Hopefully, more powerful theorems covering additional
classes of equations can be found. But for the present, one need only
know the conclusions of these two simple foundational theorems in
order to follow the theorems and examples appearing in this section.

The results of the foundations subsection are summarized in a
separate, earlier subsection titled "expansion theorems," without
reference to fixed point concepts. The foundations subsection itself
is placed later where it can be skipped by readers who do not want
to go into that subject.

1 9 7 7
"lurhlg

IA '¢ ' i te l C

12.2
Laws of the

Algebra of Programs
In the algebra of programs for an FP system variables range over

the set of functions of the system. The "operations" of the algebra
are the functional forms of the system. Thus, for example, [f,g]oh is
an expression of the algebra for the FP system described above, in which
f, g, and h are variables denoting arbitrary functions of that system. And

[f, gloh -~ [foh,goh]

is a law of the algebra which says that, whatever functions one chooses
for f, g, and h, the function on the left is the same as that on the right.
Thus this algebraic law is merely a restatement of the following pro-
position about any FP system that includes the functional forms [f,g]
and f.og:

PROPOSITION. For all [unctions f , g, and h and all objects x, ([f,g] oh):

x --= [foh,goh]:x.

PROOF

([f, gl oh):x = [f,g]:(h :x)

= ~f:(h:x), g : (h:x))

= ((foh):x, (goh):x)

= [foh, goh]:x

by definition of composition

by definition of construction

by definition of composition

by definition of construction. []

Some laws have a domain smaller than the domain of all objects.
Thus 1 o [f,g] ~ fdoes not hold for objects x such that g:x = _L. We write

defined og , , l o[f ,g]-=f

A Functional Style and Its Algebra of Programs 91

to indica te tha t the l aw {or t heo rem) on the r ight ho lds w i th in the
d o m a i n of objec ts x for w h i c h d e f i n e d o g : x = T, w h e r e

D e f de f ined ~ T

i .e. , d e f i n e d : x ~ x =_J_~_l.; T. In genera l w e shall wr i t e a qualified

functional equation:

p--~--~ f ~- g

to m e a n that , for a n y objec t x, w h e n e v e r p : x = T, t h e n f : x = g : x .

O r d i n a r y a lgebra c o n c e r n s i tself w i th two opera t ions , add i t ion and
mult ip l icat ion; it needs f e w laws. The a lgebra of p r o g r a m s is c o n c e r n e d
wi th m o r e ope ra t i ons {functional fo rms l and t he re fo re needs m o r e
laws.

Each of the fo l lowing l aws r equ i re s a c o r r e s p o n d i n g p ropos i t i on
to va l ida te it. T h e in t e res t ed r eade r will f ind m o s t p roofs of such
p ropos i t i ons ea sy {two are g iven below) . W e first de f ine the usua l
o rde r ing on func t ions and e q u i v a l e n c e in t e r m s of this order ing:

Definit ion. f < g iff for all ob jec ts x, e i ther f : x = _1_, or f : x = g : x .

Definit ion. f ~- g iff f < g and g~_f.

It is e a sy to ve r i fy tha t < is a par t ia l o rder ing , tha t f < g m e a n s g is
an ex tens ion of f , and tha t f ~ g iff f : x = g :x for all objec ts x. We n o w
give a list of a lgebra ic l aws o rgan ized b y the t w o p r inc ipa l func t iona l
f o r m s invo lved .

C o m p o s i t i o n a n d c o n s t r u c t i o n

1.1

1.2

1.3

1.4

1 .5

1.5.1

1 .6

[`fl , fn] og ~ [f, og, ... , fnOg]

~ f o [g , gn] -~ [fog , fOgn]

/ f ° [g l gn] ~ f ° [g , , / f o [g 2 gn]] w h e n n > 2

f o [g , , f o [g 2 f ° [g n - l , gn]'--]]
/ fo[g] ~ g

f o [.~, g] ~ (bu f x) og

• lo[f , fn]_<f,

s ° [f ' fs fn] --< fs for a n y se lec to r s, s<_n

d e f i n e d o ~ (for all i ~ s , l < i < n) ~ s ° [f , fn] ~ fs

[f, °1, -.. , fn°n]°[g , gn] ------ [,flog, fnog,]

t l ° [f ,] < ¢ and tlO[fl , fn] ~ [f2 fn] for n > 2

de f ined ofl ~ ~ tl o [f,] ~

and t lo[f , f ,] ~ [f2 f ,] for n > 2

92 JOHN BACKUS

1.7

1.8

and so

1.9

1.10

1.11

I I

II.1

II .2

II .3

II.3.1

I I I

III .1

I I I . l . 1

III .2

III .3

I I I .4

III .5

I V

IV.1

d i s t l ° t f , [g, gnll ~ [[f ig ,] [f ig , l]

de f ined o f ~ ---~ dist lo [f , 61 --- 6

T h e ana logous law holds for distr.

apnd lo [f , [g~ g.]] --- [f,g~ gn]

nul l °g ---~ ~ apndlo [f, g] -= [f]

on for apndr , reverse , rotl, etc.

[. . . . i] - - - i

apndlo [fog , a fob] ~ olfoapndlo [g,h]

pa i r & n o t o n u l l ° l ' , apnd lo [[l o l , 2] , d i s t ro [t l ° l ,2]] - - - distr

w h e r e f & g --- ando If, g] ; pa i r --- a t o m ~ #; eq ° [length ,2]

C o m p o s i t i o n a n d c o n d i t i o n (right assoc ia ted p a r e n t h e s e s
omitted} {Law II .2 is no t ed in M a n n a et al. [16, p. 493].}

(p---if; g)oh ~ poh- . foh; goh

h o (p ~ f; g) ~ p---, hof; hog

oro[q ,no toq] , , ando[p,q]~ f; ando[p,notoq]-~g; h

= p- -*(q~f ; g); h

p ~ (p ~ f; g); h ~- p ~ f; h

Composit ion and miscel laneous

o f < ~

de f ined of-~-~ 2 o f -=

i o f = - f o i - = i

fo id --- id of _-- f

pa i r , , lodistr ~- [1°1,2] a lso: pa i r , . lo t l -= 2 etc.

oL(fog) ~- olfoag

nul log ~ ~ a f o g -=

Condition and construction

[f , (p -~ g; h) fn]

~ P - " [f l g fn l ; [f ' h, ... , fn]

A Functional Style and Its Algebra of Programs 93

IV.I.1 [f~ (P , ~ g , ; P n ~ g n ; h) fro]

~ P , - ' [f l g , f m] ;

• .. ; P n ~ [f l , " . , g n , - " , f m] ; [f , h f m]

This concludes the present list of algebraic laws; it is by no means
exhaustive; there are many others.

P r o o f o f t w o l a w s

We give the proofs of validating propositions for laws I. 10 and I. 11,
which are slightly more involved than most of the others.

PROPOSITION 1

apndlo [f o g, c~f o h] = a f ° apndlo [g, h]

PROOF. We show that, for every object x, both of the above functions
yield the same result.

Case 1. h:x is nei ther a sequence nor ¢. Then both sides yield ±

when applied to x.

Case 2. h:x = ok. Then
apndlo[fog, c~foh]: x = apndl: (fog:x,c~) = (f:(g:x))

a foapnd lo[g ,h] : x = a f o a p n d l : (g:x, O) = af:(g:x}

= (f: (g:x))

Case 3. h:x = (Y l Yn). Then

apndl ° [fog , c~foh]: x = apndl: (f o g : x , ot f:(yl Yn))

= 0C:(g:x), f : Y , , . . . , f:Yn)

oLfoapndlo[g,h]: x = a f o a p n d l : (g:x, @1 Yn))

= a f : (g : x , Y l Yn)

= (f : (g :x) , f :Y l f:Yn} []

PROPOSITION 2

Pair & o otono l--~--~ apndlo[[12, 2], distro[tlol, 2]]] ~- distr

where f & g is the function: ando [f, g], and f2 ~ f o f .

PROOF. We show that both sides produce the same result when
applied to any pair (x,y) , where x ¢ ¢, as per the stated qualification.

94 JOHN BACKUS

Case 1. x is an atom or ±. Then distr :(x,y) = _k, since x ~e ¢. The
left side also yields ± when applied to (x,y), since tlol: (x,y) = .j_ and

all functions are _l-preserving.

Case 2. x = (xl, ... ,Xn). Then

apndlo [[12, 2], distr o [tlo 1,211 : (x, y)

= apndl : ((l :x , y), distr: (tl:x,y))

= apndl:((x, ,y) , ¢) = ((x~,y)) if tl:x = 4~

= apndl:((x~,y), ((x2,y) (Xn,Y))) if t l :x • q~

= ((x,,y) (Xn,y))

= distr:(x,y). []

1 9 7 7
" lur ing
Award
I,e,:lurc

1 2 . 3

E x a m p l e : E q u i v a l e n c e o f T w o

M a t r i x M u l t i p l i c a t i o n P r o g r a m s

We have seen earlier the matrix multiplication program:

Def MM = txaIpoadistro[1, trans 02].

We shall now show that its initial segment, M M ' , where

D e f MM' ~ txcdpoadistlodistr

can be defined recursively. (MM' "multiplies" a pair of matrices after
the second matrix has been transposed. Note that M M ' , unlike MM,
gives ± for all arguments that are not pairs.) That is, we shall show that
MM' satisfies the following equation which recursively defines the
same function (on pairs):

f------nullol-*~; apndlo[cdpodis t lo[lol , 2], fo[t lo l , 2]].

Our proof will take the form of showing that the following function, R,

D e f R-~ n u l l o l ~ ; apndlo[aIpodis t lo[lo l , 2], MM'o[t lol , 2]]

is, for all pairs (x,y), the same function as MM'. R "multiplies" two
matrices, when the first has more than zero rows, by computing the
first row of the "product" (with o~IP o distl o [1o 1, 2]) and adjoining it to
the "product" of the tail of the first matrix and the second matrix. Thus
the theorem we want is

pair ~ MM' ~ R,

from which the following is immediate:

MM -= MM'o[1, transo2] --- R o l l , t ranso2];

where

Def pair ~ a t o m - I F ; eq o[length; 2].

A Functional Style and Its Algebra of Programs 95

THEOREM: pair ~ ~ M M ' ~ R

where

D e f M M ' ~ aaIpoc~dis t lodis t r

D e f R ~ n u l l o l ~ ; apndlo[o~Ipodistlo[12, 2], M M ' o [t l o l , 2]]

PROOF

Case I. pair & n u l l o l , , M M ' - = R .

p a i r & n u l l o l ~ R-=q~

p a i r & n u l l o l ~ M M ' ~ - ~

since d i s t r : < q ~ , x > = 4~

and a f : ~ = q5

by definit ion of R

by definit ion of distr

by definit ion of Apply to all.

And so: o~alPoo~distlodistr:(~,x) = ¢.

Thus pair & n u l l o l , , M M ' ~ R .

Case 2. pair & no tonu l lo l * , M M ' ~- R.

pair & n o t o n u l l o l , , R - = R ' by d e f o f R a n d R ' (1)

where

D e f R ' ~ apndlo[o~Ipodistlo[12, 2], MMo[t lo l , 2]].

We note that

R ' --~ apndlo[fog, afoh]

where

f_-- odp odistl

g -= [12, 2]

h ~ distro [tl o 1, 2]

a f - ~ a(cHpodis t l) ~ o~alpoadis t l (by III.4). (2)

Thus, by 1.10,

R' -~ oLfoapndlo[g,h]. (3)

Now apndlo[g,h] -= apndlo [[12, 2], distr o[tlol, 2]], thus, by 1.11,

pair & n o t o n u l l o l , , apndo[g,h] =- distr. (4)

And so we have, by (1), (2), (3), and (4),

pair & n o t o n u l l o l , ~ R - ~ R '

~- o~fodistr ~ omdP oo~distl odistr --- M M '.

Case 1 and Case 2 together prove the theorem. []

96 JOHN BACKUS

1 2 . 4

E x p a n s i o n T h e o r e m s
In the following subsections we shall be "solving" some simple equa-

tions (where by a "solution" we shall mean the "least" function which
satisfies an equation). To do so we shall need the following notions and
results drawn from the later subsection on foundations of the algebra,
where their proofs appear.

12.4.1 E x p a n s i o n . Suppose we have an equation of the form

f E n (f) (El)

where E(f) is an expression involving f . Suppose fur ther that there is
an infinite sequence of functions fi for i = 0, 1, 2 each having the
following form:

fo-~i
fi+l ~ -P0~q0 ; ... ; Pi-~qi; _T_ (E2)

where the pi 's and qi's are particular functions, so that E has the
property:

E(fi)~J~+l for i = 0, 1, 2 (E3)

Then we say that E is expansive and has the fi 's as approximating
functions.

If E is expansive and has approximating functions as in (E2), and
if f is the solution of (E 1), then f c a n be written as the infinite expansion

f -= po~qo; ... ; p n ~ q n ; ... (E4)

meaning that, for any x, f:x -~ ± iff there is an n _> 0 such that
(a) pi:X = F for all i < n, and (b) Pn :x = T, and (c) qn :x ~ ±. When
f :x -~ ±, then f:x = qn:x for this n. IThe foregoing is a consequence
of the "expansion theorem.")

12.4.2 L i n e a r E x p a n s i o n . A more helpful tool for solving some
equations applies when, for any function h,

E(h) ~ p o ~ q o ; El(h) (LE1)

and there exist Pi and qi such that

E l (p i ~ q i ; h)~Pi+l~q i+l ; El(h) for i = 0, 1, 2 (LE2)

and

E 1 (i) ~ i . (LE3)

Under the above conditions E is said to be linearly expansive. If so, and
f is the solution of

f--- E(f) (LE4)

then E is expansive and f c a n again be wri t ten as the infinite expansion

f ~ p o ~ q o ; ... ; p n ~ q n ; ... (LES)

using the pi's and qi's generated by (LE1) and (LE2).

A Functional Style and Its Algebra of Programs 97

Although the pi's and qi's of (E4) or (LE5) are not unique for a
given function, it may be possible to find additional constraints which
would make them so, in which case the expansion (LES) would
comprise a canonical form for a function. Even without uniqueness
these expansions often permit one to prove the equivalence of two
different function expressions, and they often clarify a function's
behavior.

1 2 . 5
A R e c u r s i o n T h e o r e m

Using three of the above laws and linear expansion, one can prove
the following theorem of moderate generality that gives a clarifying
expansion for many recursively defined functions.

RECURSION THEOREM: Let f be a solution o f

f ~ p ~ g ; Q (f)

where

(1)

Q(k) --- h o [i ,koj] for any function k (2)

and p , g, h, i, j are any given functions; then

f ~ p ~ g, p o j ~ Q (g) ; ... ; p o j n ~ Q n (g) ; ... (3)

(where Qn(g) is h ° [i, Qn- l(g) o j] , and jn is j o j n - l for n > 2) and

Qn(g) ~ / h o [i, i ° j i o jn -1 , gojn]. (4)

PROOF.
qn, and k be any functions. Then

Q(Pn ~ qn; k) ~ h°[i , (Pn --~ qn; k)°J]
h ° [i , (p n ° j ~ qn°j; k°j)]
h° (pnoj ~ [i, qn°J]; [i, k°j])
P n°J ~ ho[i , q n ° j] ; ho[i , koj]

Pn°J ~ Q(qn); Q(k)

Thus i f po ~ p and q0 ~ g, then (5) gives pl -=poj and q~
in general gives the following functions satisfying (LE2)

We verify that p ~ g; Q(f) is linearly expansive. Let Pn,

by (2)
by II.1
by IV.1
by II.2
by (2).

Pn '~ pojn and qn ~ Qn(g).

Finally,

(5)

Q(g) and

(6)

Q (i) ~ ho[i, io j]

h o [i, i] by III. 1.1
h o i by 1.9

--- i by III.1.1.
(7)

98 JOHN BACKUS

T h u s (5) and (6) ver i fy (LE2) a nd (7) verifies (LE3), wi th E 1 ~ Q. If

we let E (f) ~ p ~ g; Q (f) , t hen we have (LE1); thus E is l inear ly

expansive. S i n c e f is a solut ion o f f ~ E (f) , conclus ion (3) follows f rom

(6) and (LES). N o w

! 9 7 7
' l u r i n g

I , l ' t ' I I I I ' l*

Qn(g) ~ ho[i, Q n - l (g) o j]

= ho[i, ho[ioj ho[io jn-J , gojn] ... 11

/h°[i , i° j i o j n - l , gojn]

by 1.1, r epea ted ly

by 1.3. (8)

Result (8) is the second conc lus ion (4).

12.5.1 Example: Correctness Proof of a Recursice Factorial
Function. Let f be a solution of

f - = eqO ~] ; x o [i d , f o s]

w h e r e

Def s -= - o [i d ,]] (subtrac t 1).

T h e n f satisfies the hypothes i s of the recurs ion t h e o r e m with p --- eq0,

g --- 1, h ~- x, i -= id, and j -= s. There fo re

f ~ eq0 ~ 1; ... ; eq0 °sn ~ Q n (i) ; ...

and

Q n (]) ~ / x o[id, idos idos n - l , losW].

Now idos k --- s k by III.2 and eq0 os n ~-~ 1 °sn ~ 1 by III.1, since

e q 0 ° s n : x implies def inedosn:x; and also e q 0 ° s n : x --- eq0: (x - n) ---

x = n . Thus if eq0osn :x = T, then x = n and

Qn(1): n = n X (n -- 1) x ... X (n -- (n -- 1)) X (l : (n - n)) = n!.

Using these results for l o s n, eq0os n, and Q n (]) in the p rev ious

expans ion for f , we obta in

f : x ~ x = O + l ; ... ; x = n ~ n x (n - 1) x ... x 1 x 1;

Thus we have p roved that f t e rmina t e s on prec ise ly the set of non-
negat ive integers and that it is the factorial func t ion the reon .

A Functional Style and Its Algebra of Programs 99

1 2 . 6

A n I t e r a t i o n T h e o r e m

This is really a corollary of the recursion theorem. It gives a s imple
expansion for m a n y iterative programs.

ITERATION THEOREM. Let f be the solution [i.e., the least solution} o f

f ~ p ~ g; h o f o k

then

f -= p ~ g; p o k ~ hogok; ... ; p ° k n ~ hnog°kn;

PROOF. L e t h ' - - - h o 2 , i ' - - - i d , j ' ~ k , then

f -= p ~ g; h ' o [i ' , f o j ']

since h o 2 o [i d , f o k] --- h o f ok by 1.5 {id is def ined except for ±, and
the equat ion holds for _L). Thus the recurs ion theo rem gives

f __- p ~ g; ... ; p o k n ~ Qn(g); ...

where

Qn(g) =_ ho2 °[id, Qn-~(g)ok]

h ° Q n - ~ (g) ° k - = h n ° g ° k n b y I . 5 . []

12.6.1 E x a m p l e : C o r r e c t n e s s P r o o f fo r a n I t e r a t i v e F a c t o r i a l
F u n c t i o n . Let f be the solution of

f - - - e q 0 o l ~ 2 ; f o [s o l , ×]

where D e f s --- - o [id, 1] {substract 1). We want to prove that f : <x, 1}

= x! i f fx is a nonnegat ive integer. L e t p ~ eq0o l , g --- 2, h --- id, k -=

[sol , ×]. Then

f _= p .--~ g; h ° f o k

and so

f ---p ~ g; ... ; p o k ~ gokn, ... (1)

by the i teration theorem, since h n --- id. We want to show that

pair ~ k n ~ [an, bn] (2)

100 JOHN BACKUS

holds for eve ry n > 1, w h e r e

a n -~ Snol

b n ~ / × ° [s n - I °1 sol, 1, 2].

1 9 7 7

'I u,ing

Award

I,t '¢ ' lurc
(3)

(4)

N o w (2) holds for n ~ 1 by definit ion of k. We assume it holds for some

n >_ 1 and prove it t hen holds for n + 1. N o w

pair ~ k n+l ~ k o k n -= [sol, X]O[an, b n] (5)

s ince (2) holds for n. And so

pair ' ' k n + l ~ [S ° a n , x ° [a n , bn]] b y l . l a n d l . 5 . (6)

To pass f rom (5) to (6) we m u s t check that w h e n e v e r an or bn yie ld

_L in (5), so will the r ight side of (6). N o w

S ° a n ~ s n+l °1 ~- an+ 1 (7)

× °[an, bn] ~ / x o[s nol sol , 1, 2]

--= bn+l by 1.3. (8)

C o m b i n i n g (6), (7), and [8) gives

pair , ,k n+l ~ [an+l , bn+l] . (9)

Thus (2) holds for n = 1 and holds for n + 1 w h e n e v e r it holds for n;

therefore, by induction, it holds for every n > 1. N o w (2) gives, for pairs:

de f ined°k n ' ' p ° k n ~ eq0o lo [an , bn]

eq0oan ~ eq0os n° l (10)

de f ined°k n ' ' g ° k n ~- 2 ° [an, bn]

/ × ° [s n - l ° l , s ° l , 1, 2] (11)

[both use 1.5). N o w (1) tells us that f : (x, 1) is def ined iff there is an n

such t h a t p o k i : (x , 1) = F f o r all i < n, a n d p o k n : (x , 1) = T, tha t is, by

(10), eq0 os n :x = T, i.e., x = n; and g o k n : (x , 1) is defined, in w h i c h case,

by (11),

f : (x , 1) = / × : (1 , 2 x - l , x , 1) = n ! []

which , is w h a t we set out to prove.

A Functional Style and Its Algebra of Programs 101

12.6 .2 E x a m p l e : P r o o f o f E q u i v a l e n c e o f Two I t e r a t i v e P ro -
g r a m s . In this example we w a n t to prove that two i terat ively def ined
programs, f and g, are the same funct ion. Let f be the solut ion of

f------pol~2; h o f o [k o l , 21.

Let g be the solut ion of

g - = p o l ~ 2 ; g o [k o l , ho2] .

Then, by the i terat ion t h e o r e m :

f ~ p o ~ q o ; ... ; p n ~ q n ; ...

g - - -p 'o-~q 'o; ... ; p ' n ~ q ' n ; ...

w h e r e (letting r ° ------ id for a ny r), for n = 0, 1

Pn = P ° l ° [k° l , 2] n m P ° l ° [k n ° m , 2]

qn " hn °2 o[kol , 2] n ~ hnoEo[kno l , 2]

P ' n - = P ° l , h ° [k ° l , 2] n - = p o l o [k n o l , hno2]

q 'n ~ 2° [k°l, h°2] n " 2 ° [k n ° l , hn°2]

Now, f r o m the above, using 1.5,

de f inedo2 , , Pn ~ P °kn°l

d e f i n e d ° h n ° 2 ~ ' P ' n - - - P °kn°l

de f i ned°kn° l ' ' qn --- q ' n ~ h n ° 2 .

T h u s

de f ined°h n°2 ' ' de f inedo2 -= T

defined°hn °2 ' ' Pn ~- P 'n

and

f = p 0 ~ q 0 ; ... ; p n ~ h n ° 2 ; ...

g = p ' 0 - ~ q ' 0 ; ... ; p ' n ~ h n ° 2 ; ...

(1)

(2)

(3)

(4)

by 1.5.1 (5)

by 1.5.1 (6)

by 1.5.1 (7)

by 1.5.1 (8)

(9)

(10)

(11)-

(12)

(13)

(14)

(15)

since Pn and p ' n provide the qualif icat ion needed for qn = q 'n = hn °2.

102 JOHN BACKUS

1 9 7 7

'lur|ng
Awiartl
| e (l u i ' c

Now suppose there is an x such that f ° x ~ g:x . Then there is
an n such that pi:x = p ' i : x = F f o r i < n, and pn:X # p ' n : x . From
(12) and (13) this can only happen when h n o2:x = ±. But since h
is ±-preserving, h m o2:x = ± for all m > n . Hence f : x = g : x = ± by
(14) and (15). This contradicts the assumption that there is an x for
which f :x ~ g:x. Hence f=- g.

This example Iby J. H. Morris, Jr. I is treated more elegantly in [16]
on p. 498. However, some may find that the above treatment is more
constructive, leads one more mechanically to the key questions, and
provides more insight into the behavior of the two functions.

12.7
Nonl inear Equations

The earlier examples have concerned "linear" equations lin which
the "unknown" function does not have an argument involving itself).
The question of the existence of simple expansions that "solve"
"quadratic" and higher order equations remains open.

The earlier examples concerned solutions of f=- E(f) , where E is
linearly expansive. The following example involves an E(f) that is
quadratic and expansive [but not linearly expansive).

12.7.1 Example : p roof of i d e m p o t e n c y 1[16], p. 497). Let f be
the solution of

f~- E(f) ~ p a i d ; f2 °h. (1)

We wish to prove that f ~ f t . We verify that E is expansive {Section
12.4.1} with the following approximating functions:

f0 -= i (2a)

fn = - p A i d ; ... ; p ° h n - l ~ h n - 1 ; _ L for n > 0. (2b)

First we note that p-~--*fn ~ id and so

P °hi-~--~fn °hi ~ hi. (3)

Now E(f) -= p--,id; i 2 o h -=f~ (4)

and

E(fn)
~-p~id;fno(p~id; ... ;p°hn-~hn-l;±)°h
--= p a i d ; fn o(p o h ~ h ; ... ; p ohn --+h n ; i °h)

=- p a i d ; p ° h ~ f n °h; ... ; p ° h n ~ f n °hn, fn o±

--~p~id; p ° h ~ h ; ... ; p °hn-*hn; ± by (3)

~ f n + l (5)

A Functional Style and Its Algebra of Programs 103

Thus E is expansive by (4) and (5); so by {2) and Section 12.4.1 (E4)

f ~ p ~ i d ; ... ; p ° h n ~ h n (6)

But (6)i by the iteration theorem, gives

f -~ p o i d ; f o h . (7)

Now, i f p : x = T, t h e n f : x = x = f Z : x , by (1). I f p : x = F, then

f : x = f 2 o h : x by (1)

= f : (f o h :x) = f : (f :x) by (7)

= f Z : x .

[]

I f p : x is neither Tnor F, then f : x = ± = f 2 : x . Thus f ~ f 2 .

1 2 . 8

F o u n d a t i o n s

for the
Algebra of Programs

Our purpose in this section is to establish the validity of the results
stated in Section 12.4. Subsequent sections do not depend on this
one, hence it can be skipped by readers who wish to do so. We use
the standard concepts and results from [16], but the notation used
for objects and functions, etc., will be that of this paper.

We take as the domain [and range I for all functions the set O of
objects [which includes ±1 of a given FP system. We take F to be
the set of functions, and F to be the set of functional forms of that
FP system. We write E (f) for any function expression involving
functional forms, primitive and defined functions, and the function
symbol f; and we regard E as a functional that maps a function f
into the corresponding function E(f) . We assume that all f E F are
±-preserving and that all functional forms in F correspond to con-
t inuous functionals in every variable [e.g., [f, g] is continuous in both
f a n d g). {All primitive functions of the FP system given earlier are ±-
preserving, and all its functional forms are continuous.I

Definitions. Let E(f) be a function expression. Let

f0 ~ i

f i + l ~ - - P o ~ q o ; " . ;Pi -*qi ; i for i = 0, 1

where pi, qi ~ E Let E have the property that

E (f ~) ~ f ~ + l f o r i = 0, 1

104 JOHN BACKUS

Then E is said to be expansive with the approximating functions f,. We
write

! 9 7 7

'1 , , r i n g

/%w~,, d

I~t, l ' l i i r l ,

f--=po-~qo; ... ; p n - + q n ; . . .

to mean that f ~-limi {fi}, where the f, have the form above. We call
the right side an infinite expansion of f. We take f : x to be defined
iff there is an n > 0 such that (a) Pi :x = F for all i < n, and (b) Pn :x
= T, and (c) qn:X is defined, in which case f : x = qn:X.

EXPANSION THEOREM. Let E (f) be expansive with approximating
functions as above. Let f be the least function satisfying

f -= E (f) .

Then

f - - = p o ~ q o ; . . . ; p n - - ~ q n ;

PROOF. Since E is the composit ion of cont inuous functionals (from
F} involving only monotonic functions {±-preserving functions from
F) as constant terms, E is cont inuous [16, p. 493]. Therefore its least
fixed p o i n t f i s limi {El(i)} ~ limi{fl} [16, p. 494], which by definition
is the above infinite expansion for f. []

Definition. Let E (f) be a function expression satisfying the

E (h) - ~ p o ~ q o ; El(h) for a l l h ~ F (LE1)

where Pi ~ F and qi ~ F exist such that

E{ (p i~ q i ; h) ~ P i + l ~ q i + l ; El(h)
for a l lh E F a n d i = O, 1

and

(LE2)

E , (i) ~ i . (LE3)

Then E is said to be linearly expansive with respect to these pi 's and

qi's.

LINEAR EXPANSION THEOREM. Let E be linearly expansive with
respect to Pi and qi, i = O, 1 Then E is expansive with approximating
functions

fo -=i (I)

~+I --=Po~qo; ... ; P i ~ q i ; i . (2)

A Functional Style and Its Algebra of Programs 105

PROOF. We want to show that E(f~) ---fi+l for any i>0 . Now

E(fo) ~ p o ~ q o ; Ei(__L) ~Po~qo;--L~f~ by (LE1)(LE3)(1). (3)

Let i > 0 be fixed and let

~ po~qo; wl (4a)
wl --= pl ~ q l ; W2 (4b)
etc.

Wi-1 ~- P i -1 - - ' ~q i -1 ; -J-" (4-)

Then, for this i > 0

E(f i) -=p0~qo; El(A) by (LE1)
Ei(3]) ~p~--'q~; E~(w~) by (LE2) and (4a)

E~(w~)~p2~q2; El(w2) by (LE2) and (4b)
etc.

El(wi-1) mPi-*qi; El(Z) by (LE2)and (4-)
-= pi ~qi ; 5_ by (LE3).

Combining the above gives

E(j]) ~J]+ l for arbitrary i > 0 , by (2). (5)

By (3), (5) also holds for i = 0; thus it holds for all i ~ 0. Therefore
E is expansive and has the required approximating functions. []

COROLLARY. I f E is linearly expansive with respect to Pi and qi,
i = O, 1 and f is the least function satisfying

f ~ E(f) (LE4)

then

f ~ P o ~ q o ; ... ; P n ~ q n ; (LES)

12 .9
T h e A l g e b r a o f P r o g r a m s

f o r t h e L a m b d a C a l c u l u s

a n d f o r C o m b i n a t o r s

Because Church's lambda calculus [5] and the system of combinators
developed by Sch6nfinkel and Curry [6] are the primary mathematical
systems for representing the notion of application of functions, and
because they are more powerful than FP systems, it is natural to
enquire what an algebra of programs based on those systems would
look like.

106 JOHN BACKUS

The lambda calculus and combinator equivalents of FP composi-
tion, fog, are

1 9 7 7

' l u r l . g
A~vard
l,t'('l II l't" Xfgx. (f(gx)) ~ B

where B is a simple combinator defined by Curry There is no direct
equivalent for the FP object (x,yl in the Church or Curry systems
proper; however, following Landin [14] and Burge [4], one can use the
primitive functions prefix, head, tail, null, and atomic to introduce the
notion of list structures that correspond to FP sequences. Then, using
FP notation for lists, the lambda calculus equivalent for construction
is kfgx. (fx, gxl. A combinatory equivalent is an expression involving
prefix, the null list, and two or more basic combinators. It is so complex
that I shall not attempt to give it.

If one uses the lambda calculus or combinatory expressions for the
functional forms fog and [f, g] to express the law I. 1 in the FP algebra,
[f,g] oh _-- [fob,gob], the result is an expression so complex that the
sense of the law is obscured. The only way to make that sense clear
in either system is to name the two functionals: composition =- B, and
construction ~ A, so that Bfg ~ f o g , and Afg =- [f,g]. Then 1.1 be-
comes

B(Afg)h ~- A(Bfh) (Bgh)

which is still not as perspicuous as the FP law.
The point of the above is that if one wishes to state clear laws like

those of the FP algebra in either Church's or Curry's system, one
finds it necessary to select certain functionals {e.g., composition and
construction} as the basic operations of the algebra and to either give
them short names or, preferably, represent them by some special
notation as in FP. If one does this and provides primitives, objects, lists,
etc., the result is an FP-like system in which the usual lambda expres-
sions or combinators do not appear. Even then these Church or Curry
versions of FP systems, being less restricted, have some problems
that FP systems do not have:

(a) The Church and Curry versions accommodate functions of
many types and can define functions that do not exist in FP systems.
Thus, Bf is a function that has no counterpart in FP systems. This
added power carries with it problems of type compatibility. For example,
in fog, is the range of g included in the domain of f ? In FP systems
all functions have the same domain and range.

(b) The semantics of Church's lambda calculus depends on substi-
tution rules that are simply stated but whose implications are very
difficult to fully comprehend. The true complexity of these rules is
not widely recognized but is evidenced by the succession of able
logicians who have published "proofs" of the Church-Rosser theorem
that failed to account for one or another of these complexities. (The

A Functional Style and Its Algebra of Programs 107

Church-Rosser theorem, or Scott's proof of the existence of a model
[22], is required to show that the lambda calculus has a consistent
semantics. I The definition of pure Lisp contained a related error for
a considerable period {the "funarg" probleml. Analogous problems
attach to Curry's system as well.

In contrast, the formal {FFPI version of FP systems {described in
the next section) has no variables and only an elementary substitution
rule la function for its name), and it can be shown to have a consistent
semantics by a relatively simple fixed-point argument along the lines
developed by Dana Scott and by Manna et al. [16]. For such a proof
see McJones [18].

12.10
Remarks

The algebra of programs oulined above needs much work to provide
expansions for larger classes or equations and to extend its laws and
theorems beyond the elementary ones given here. It would be in-
teresting to explore the algebra for an FP-like system whose sequence
constructor is not ±-preserving {law 1.5 is strengthened, but IV. 1 is lost).
Other interesting problems are: (a) Find rules that make expansions
unique, giving canonical forms for functions; (b) find algorithms for
expanding and analyzing the behavior of functions for various classes
of arguments; and (c) explore ways of using the laws and theorems
of the algebra as the basic rules either of a formal, preexecution "lazy
evaluation" scheme [9, 10], or of one which operates during execution.
Such schemes would, for example, make use of the law lo If, g] < f t o
avoid evaluating g:x.

13
Formal Systems for

Functional Programming
{FFP Systems 1

13.1
Introduction

As we have seen, an FP system has a set of functions that depends
on its set of primitive functions, its set of functional forms, and its
set of definitions. In particular, its set of functional forms is fixed
once and for all, and this set determines the power of the system
in a major way. For example, if its set of functional forms is empty,
then its entire set of functions is just the set of primitive functions.
In FFP systems one can create new functional forms. Functional
forms are represented by object sequences; the first element of a
sequence determines which form it represents, while the remaining
elements are the parameters of the form.

108 JOHN BACKUS

The ability to define new funct ional forms in FFP sys tems is
one consequence of the principal difference be tween them and FP
systems: in FFP sys tems objects are used to " represen t" functions
in a systematic way. Otherwise FFP systems mirror FP systems closely.
They are similar to, but s impler than, the Reduction (Red) languages
of an earlier paper [2].

We shall first give the s imple syntax of FFP systems, then discuss
their semant ics informally, giving examples, and finally give their
formal semantics.

I 9 7 7

' l u r i n g
A,,va~ d

IA't'I ur t '

1 3 . 2

S y n t a x
We describe the set O of objects and the set E of expressions of an

FFP system. These depend on the choice of some set A of atoms, which
we take as given. We assume that T (true), F [false), ~ (the emp ty
sequence), and # (default) belong to A, as well as "numbers" of various
kinds, etc.

(1) Bottom, ± , is an object but not an atom.

(2) Every a tom is an object.
(3) Every object is an expression.
(4) If Xm , Xn are objects [expressions], then (x~ xn) is an

object [resp., expression] called a sequence (of length n) for n > 1. The
object]expression] xi for 1 _< i _< n, is the ith element of the sequence
(Xm xi xn). (~ is both a sequence and an atom; its length is 0.)

(5) If x and y are expressions, then (x:y) is an expression called an
application, x is its operator and y is its operand. Both are elements of
the expression.

(6) If x = (xl Xn) and if one of the e l emen t s ' o f x is _L, then
x = _l_. That is, (. . . . _L) = _L.

(7) All objects and expressions are formed by finite use of the above
rules.

A subexpression of an expression x is ei ther x itself or a subexpres-
sion of an e lement of x. An FFP object is an expression that has no
application as a subexpression. Given the same set of atoms, FFP and
FP objects are the same.

1 3 . 3

I n f o r m a l R e m a r k s
About FFP Semant ics

13.3.1 T h e M e a n i n g of E x p r e s s i o n s ; t h e S e m a n t i c F u n c t i o n ~.
Every FFP expression e has a meaning, Ize, which is a lways an object;
ge is found by repeatedly replacing each innermost applicat ion in e by
its meaning. If this process is nonterminat ing, the meaning of e is ±.
The meaning of an innermos t applicat ion (x:y) Isince it is innermost ,

A Functional Style and Its Algebra of Programs 109

x and y must be objects I is the result of applying the function represented
by x to y, just as in FP systems, except that in FFP systems functions
are represented by objects, ra ther than by funct ion expressions, with
atoms [instead of function symbolsl representing primitive and defined
functions, and with sequences representing the FP functions denoted
by functional forms.

The association between objects and the functions they represent
is given by the representation function, p, of the FFP system. (Both p
and/z belong to the description of the system, not the system itself.)
Thus if the atom NULL represents the FP function null, then
pNULL = null and the meaning of (NULL:A) is iz(NULL:A) =
(pNULL):A = null:A = F.

From here on, as above, we use the colon in two senses. When
it is be tween two objects, as in (NULL:A), it identifies an FFP appli-
cation that denotes only itself; when it comes between a function
and an object, as in (pNULL):A or null:A, it identifies an FP-like
application that denotes the result of applying the function to the object.

The fact that FFP operators are objects makes possible a function,
apply, which is meaningless in FP systems:

apply:(x ,y) = (x:y).

The result of apply: (x,y) , namely, (x: y), is meaningless in FP systems
on two levels. First, (x:y) is not itself an object; it illustrates another
difference between FP and FFP systems: some FFP functions, like app-
ly, map objects into expressions, not directly into objects as FP func-
tions do. However, the meaning of apply: ix ,y) is an object (see below).
Second, ix:y) could not be even an intermediate result in an FP system;
it is meaningless in FP systems since x is an object, not a
function, and FP systems do not associate functions with objects. Now
if APPLY represents apply, then the meaning of (APPLY: INULL,A))
is

#(APPLY:(NULL,A)) = #((pAPPLY):iNULL,A))

= #(apply~ (NULL,A))

= #(NULL:A) = #((oNULL):A)

= /~(null:A) = /zF = F.

The last step follows from the fact that every object is its own meaning.
Since the meaning function # eventually evaluates all applications, one
can think of apply:(NULL,A) as yielding F even though the actual result
is (NULL:A).

13.3.2 H o w Objec t s Represent Functions; the Representation
Function p. As we have seen, some atoms Iprimitive atoms) will
represent the primitive functions of the system. Other atoms can

110 JOHN BACKUS

represent defined functions just as symbols can in FP systems. If
an atom is neither primitive nor defined, it represents 5_, the function
which is ± everywhere.

Sequences also represent functions and are analogous to the func-
tional forms of FP. The function represented by a sequence is given
Irecursively) by the following rule.

1 9 7 7

' l i , r ing

l.¢~¢ l l l i t '

M e t a c o m p o s i t i o n ru le

(P(XI Xn)) :y = (PX1):((X, Xn), y) ,

where the xi's and y are objects. Here Oxl determines what functional
form (Xl, ... , Xn) represents, and x2 Xn are the parameters
of the form {in FFP, x~ itself can also serve as a parameter}. Thus,
for example, let Def oCONST--- 2ol; then (CONST, x) in FFP repre-
sents the FP functional form }, since, by the metacomposit ion rule, if
y ~ _1_,

(o(CONSr, x)):y = (oCONSr):((CONST, x),y)

= 2 o l ((C O N S T , x) , y) = x.

Here we can see that the first, controlling, operator of a sequence or
form, CONST in this case, always has as its operand, after metacom-
position, a pair whose first element is the sequence itself and whose
second element is the original operand of the sequence, y in this
case. The controlling operator can then rearrange and reapply the
elements of the sequence and original operand in a great variety Of ways.
The significant point about metacomposit ion is that it permits the
definition of new functional forms, in effect, merely by defining new
functions. It also permits one to write recursive functions without a
definition.

We give one more example of a controlling function for a functional
form: Def oCONS ~ aapply otl °distr. This definition results in (CONS,

f~ fn) - -where the fi are objects--representing the same function
as [P f l , ... , Pfn]. The following shows this.

(o (C O N S , f l fn)) :x

= (oCONS) : ((CONS , f l fn),X) by metacomposit ion

= aapply otl odistr:((CONS, f~ fn),X) by def of oCONS

= ~xapply:((f~,x) , (fn,X)) by def of tl and distr and o

= (apply:(f l ,x) apply:(fn,X)) by def of a

= ((f~:x) (fn:X)) by def of apply.

In evaluating the last expression, the meaning function # will produce
the meaning of each application, giving 0 fi:x as the ith element.

A Functional Style and Its Algebra of Programs 111

Usually, in describing the function represented by a sequence,
we shall give its overall effect rather than show how its controlling
operator achieves that effect. Thus we would simply write

(p(CONS,fl fn)) :x = ((f l :x) (fn :X))

instead of the more detailed account above.

We need a controlling operator, COMP, to give us sequences
representing the functional form composition. We take p COMP to be
a primitive funct ion such that, for all objects x,

(o(COMP, f l fn)) :x = (fl:(fz:(. . . :(fn:x). .-))) for n > 1.

{I am indebted to Paul McJones for his observation that ordinary
composit ion could be achieved by this primitive funct ion rather than
by using two composit ion rules in the basic semantics, as was done
in an earlier paper [2].)

Although FFP systems permit the definition and investigation of new
functional forms, it is to be expected that most programming would
use a fixed set of forms {whose controlling operators are primitives),
as in FE so that the algebraic laws for those forms could be employed,
and so that a structured programming style could be used based on those
forms.

In addition to its use in defining functional forms, metacomposi t ion
can be used to create recursive functions directly wi thout the use
of recursive definitions of the form D ef f - = E(f) . For example, if
oMLAST = - - n u l l o t l o 2 ~ l o 2 ; app lyo [1 , t l o2] , t h e n o(MLAST)
--- last, where last:x --- x = (xt Xn) ~Xn; ±. Thus the operator
(MLAST) works as follows:

I~ ((MLAS T) : (A, B))

= ~t(oMLAST: ((MLAST), (A,B))) by metacomposi t ion

= ~(apply o [1, tlo 2]:((MLAST), (A, B)))

= v(apply: ((MLAST), (B)))

= it((MLAST):(B))

= tz(oMLAST: ((MLAST), (B)))

=V(1 o2:((MLAST), (B)))

= O .

13.3.3 S u m m a r y of t he P r o p e r t i e s o f 0 and /z . So far we have
shown how 0 maps atoms and sequences into functions and how
those functions map objects into expressions. Actually, 0 and all FFP
functions can be extended so that they are defined for all expressions.

112 JOHN BACKUS

With such extensions the proper t ies of p and /z can be summar ized
as follows:

/z E [expressions ~ objects].

If x is an object , /zx = x.

If e is an expression and e = (e~ en), then #e = (#el

1 9 7 7

' l i l t i n g

IL*{ 1111 L" (1)
(z)

(3)
e n) •

(4)

(S)

(6)

P E [expressions ~ [expressions ~ expressions]].

For any expression e, pe = p(/ze).

If x is an object and e an expression, then px:e = px:(#e).

(7) If x and y are objects, then/~(x :y) = /z(px:y). In words: the
meaning of an FFP applicat ion (x:y) is found by applying px, the
funct ion represen ted by x, to y and then finding the meaning of the
result ing expression {which is usually an object and is then its own
meaning}.

13.3.4 Cells, Fe tch ing , a n d Stor ing. For a n u m b e r of reasons it
is convenient to create funct ions which serve as names. In particular,
we shall need this facility in describing the semant ics of definitions
in FFP systems. To introduce naming functions, that is, the ability
to fetch the contents of a cell with a given name from a store {a sequence
of ceils I and to store a cell wi th given name and contents in such
a sequence, we introduce objects called cells and two new functional
forms, fetch and store.

Ceils. A cell is a triple (CELL, name, contents). We use this fo rm instead
of the pair (name, contents) so that ceils can be dist inguished f rom
ordinary pairs.

Fetch. The funct ional fo rm fetch takes an object n as its pa rame te r {n
is cus tomari ly an a tom serving as a name}; it is wri t ten ?n (read "fetch
n"). Its definit ion for objects n and x is

Tn:x-= x = 4) ~ # ; atom:x--,_L; (l :x) = (CELL,n,c)--÷c; Tnotl:x

where # is the a tom "default:' Thus ?n {fetch nl applied to a sequence
gives the contents of the first cell in the sequence whose name is n;
if there is no cell named n, the result is default, # . Thus ?n is the name
funct ion for the name n. {We assume that pFETCH is the pr imit ive
funct ion such that P (FETCH, n) --= ?n. Note that T n s imply passes over
e lements in its operand that are not ceils.}

Store and push, pop, purge. Like fetch, store takes an object n as its
parameter ; it is wri t ten ,Ln {"store n"). When applied to a pair (x,y>,
where y is a sequence, Sn r emoves the first cell n a m e d n f rom y, if any,
then creates a new cell n a m e d n with contents x and appends it to y.
Before defining J,n {store n I we shall specify four auxil iary functional
forms. {These can be used in combinat ion wi th fetch n and store n

A Functional Style and Its Algebra of Programs 113

to obtain multiple, named, LIFO stacks within a storage sequence.I Two
of these auxiliary forms are specified by recursive functional equations;
each takes an object n as its parameter.

(cellname n) -= atom ~ F; eq o [length, 3] ~ eq o [[CELL, hi , [1, 2]] ; F

(push n) ---- pair ~ apndl o [[CELL, h, 1], 2] ; i

(pop n) ~- null ~ ~; (cellname n) o 1 ~ tl; apndl o [1, (pop n) otl]

(purge n) =- null ~ ~; (cellname n)o 1 ~ (purge n)otl;
apndl o [1, (purge n) otl]

,Ln -= p a i r ~ (p u s h n)o[1, (pop n)o2]; i

The above functional forms work as follows. For x -~ _L, (cellname n) :x
is T i f x is a cell named n; otherwise it is F. (pop n):y removes the first
cell named n f rom a sequence y; (purge n):y removes all cells named
n from y. (push n): (x,y) puts a cell named n with contents x at the head
of sequence y; ,~n: (x,y) is (push n): (x,(pop n) :y).

{Thus (push n): (x,y) = y ' pushes x onto the top of a "stack" named
n in y ' ; x can be read by Tn:y' = x and can be removed by (pop n):y ' ;
thus tn °(pop n) :y ' is the element below x in the stack n, provided there
is more than one cell named n in y'.}

13.3.5 D e f i n i t i o n s in F F P Sys tems. The semantics of an FFP
system depends on a fixed set of definitions D [a sequence of cells},
just as an FP system depends on its informally given set of definitions.
Thus the semantic function/~ depends on D; altering D gives a new
/~' that reflects the altered definitions. We have represented D as an
object because in AST systems {Section 141 we shall want to t ransform
D by applying functions to it and to fetch data f rom i t - - i n addition to
using it as the source of funct ion definitions in FFP semantics.

If (CELL,n,c) is the first cell named n in the sequence D [and n is
an atom} then it has the same effect as the FP definition D e f n -= 0c,
that is, the meaning of (n:x) will be the same as that of pc:x. Thus, for
example, if (CELL,CONST,(COMP,2,1)) is the first cell in D named
CONST, then it has the same effect as D e f C O N S T - = 2 o 1, and the FFP
system with that D would find

#(CONST: ((x,y),z)) = y

and consequent ly

#((CONST,A) :B) = A.

In general, in an FFP system with definitions D, the meaning of an
application of the form (atom:x) is dependent on D; if ?atom:D -~ #
{that is, atom is defined in D) then its meaning is #(c:x), where c =
?atom:D, the contents of the first cell in D named atom. If ?atom:D =
, then atom is not defined in D and either atom is primitive, i.e., the
system knows how to compute patom:x, and #(atom:x) = iz(oatom:x);
otherwise ~(atom:x) = _L.

114 JOHN BACKUS

1 3 . 4

F o r m a l S e m a n t i c s

f o r F F P S y s t e m s

We assume that a set A of atoms, a set D of definitions, a set P C A
of primitive atoms and the primitive functions they represent have
all been chosen. We assume that pa is the primitive function represented
by a if a belongs to P, and that oa = i i f a belongs to Q, the set of
atoms in A-P that are not defined in D. Although p is defined for
all expressions (see 13.3.3), the formal semantics uses its definition
only on P and Q. The functions that p assigns to other expressions x
are implicitly de termined and applied in the following semantic rules
for evaluating #(x:y). The above choices of A and D, and of P and the
associated primitive functions determine the objects, expressions, and
the semantic function #D for an FFP system. (We regard D as fixed and
write/~ for/~D.) We assume D is a sequence and that t y : D can be com-
puted (by the function Ty as given in Section 13.3.4) for any atom y.
With these assumptions we define/z as the least fixed point of the func-
tional r, where the funct ion r/~ is defined as follows for any function
(for all expressions x, xi, y, Yi, z, and w):

(r#)x ------ x E A-~x;

X = (X l , Xn)- '~(/AX 1 / . tXn/;

x = (y : z) ~

(y ~ A & (Ty:D) = # ~ ~((py)(#z));

y E A & (?y:D) = w~lz(w:z);

Y = (Yl , Yn)~/z(y, :(y,z}); #(/By:z)); _k

The above description of # expands the operator of an application by
definitions and by metacomposi t ion before evaluating the operand. It
is assumed that predicates like "x E A" in the above definition of r/z
are _L-preserving (e.g., "_k E A" has the value A_) and that the condi-
tional expression itself is also _k-preserving. Thus (r /z)±~ _L and (r/z)
(_k:z) ~ _L. This concludes the semantics of FFP systems.

1 ~) 7 7

I U l l i l | ~

A,~ a l d

I ~'(ia l l l '

14
Applicative State Transition Systems

(AST Systems 1

1 4 . 1

I n t r o d u c t i o n

This section sketches a class of systems mentioned earlier as alterna-
tives to von Neumann systems. It must be emphasized again that these
applicative state transition systems are put forward not as practical
programming systems in their present form, but as examples of a class
in which applicative style programming is made available in a history

A F u n c t i o n a l Style a n d I ts A lgeb ra of P r o g r a m s 115

sensitive, but non-yon Neumann system. These systems are loosely
coupled to states and depend on an underlying applicative system
for both their programming language and the description of their state
transitions. The underlying applicative system of the AST system
described below is an FFP system, but other applicative systems could
also be used.

To understand the reasons for the structure of AST systems, it is
helpful first to review the basic structure of avon Neumann system,
Algol, observe its limitations, and compare it with the structure of AST
systems. After that review a minimal AST system is described; a small,
top-down, self-protecting system program for file maintenance and
running user programs is given, with directions for installing it in the
AST system and for running an example user program. The system
program uses "name functions" instead of conventional names and the
user may do so too. The section concludes with subsections discussing
variants of AST systems, their general properties, and naming systems.

14.2
The Structure of Algol

Compared to That of AST Systems
An Algol program is a sequence of statements, each representing

a transformation of the Algol state, which is a complex repository of
information about the status of various stacks, pointers, and variable
mappings of identifiers onto values, etc. Each statement communicates
with this constantly changing state by means of complicated protocols
peculiar to itself and even to its different parts (e.g., the protocol
associated with the variable x depends on its occurrence on the left or
right of an assignment, in a declaration, as a parameter, etc.).

It is as if the Algol state were a complex "store" that communicates
with the Algol program through an enormous "cable" of many
specialized wires. The complex communications protocols of this cable
are fixed and include those for every statement type. The "meaning"
of an Algol program must be given in terms of the total effect of a vast
number of communications with the state via the cable and its pro-
tocols [plus a means for identifying the output and inserting the input
into the state). By comparison with this massive cable to the Algol
state/store, the cable that is the yon Neumann bottleneck of a computer
is a simple, elegant concept.

Thus Algol statements are not expressions representing state-to-state
functions that are built up by the use of orderly combining forms from
simpler state-to-state functions. Instead they are complex messages with
context-dependent parts that nibble away at the state. Each part
transmits information to and from the state over the cable by its own
protocols. There is no provision for applying general functions to the
whole state and thereby making large changes in it. The possibility of
large, powerful transformations of the state S by function application,

116 JOHN BACKUS

S ~ f : S , is in fact inconceivable in the von N eu m an n -- cable and
pro tocol - -context : there could be no assurance that the new state f : S
would match the cable and its fixed protocols unless f is restricted to
the tiny changes a l lowed by the cable in the first place.

We want a computing system whose semantics does not depend on
a host of baroque protocols for communicat ing with the state, and
we want to be able to make large t ransformations in the state by
the application of general functions. AST systems provide one way
of achieving these goals. Their semantics has two protocols for getting
information f rom the state: (1) get f rom it the definition of a function
to be applied, and (2) get the whole state itself. There is one protocol
for changing the state: compute the new state by function application.
Besides these communicat ions with the state, AST semantics is appli-
cative (i.e., FFP). It does not depend on state changes because the
state does not change at all during a computation. Instead, the result
of a computat ion is output and a new state. The structure of an AST
state is slightly restricted by one of its protocols: It must be possible
to identify a definition {i.e., cell} in it. Its s t r u c t u r e - it is a s e q u e n c e -
is far simpler than that of the Algol state.

Thus the structure of AST systems avoids the complexity and
restrictions of the von Neumann state {with its communicat ions pro-
tocols} while achieving greater power and f reedom in a radically dif-
ferent and simpler f ramework.

I ~ 7 7

'I u ,-i.g
A w a r d

l .cclure

1 4 . 3

S t r u c t u r e o f a n A S T Sys t em

An AST system is made up of three elements:

(1) An applicative subsystem {such as an FFP system}.

(2) A state D tfiat is the set of definitions of the applicative sub-
system.

(3) A set of transition rules that describe how inputs are transformed
into outputs and how the state D is changed.

The programming language of an AST system is just that of its
applicative subsystem. {From here on we shall assume that the latter
is an FFP system.} Thus AST systems can use the FP programming
style we have discussed. The applicative subsystem cannot change the
state D and it does not change during the evaluation of an expression.
A new state is computed along with output and replaces the old state
when output is issued. (Recall that a set of definitions D is a sequence
of cells; a cell name is the name of a defined function and its contents
is the defining expression. Here, however, some cells may name data
rather than functions; a data name n will be used in ?n (fetch n) whereas
a function name will be used as an operator itself.}

We give below the transition rules for the e lementary AST system

A Functional Style and Its Algebra of Programs 117

we shall use for examples of programs. These are perhaps the simplest
of many possible transition rules that could determine the behavior
of a great variety of AST systems.

14.3.1 Transition Rules for an Elementary AST System. When
the system receives an input x, it forms the application (SYSTEM:x)
and then proceeds to obtain its meaning in the FFP subsystem, using
the current state D as the set of definitions. SYSTEM is the distinguished
name of a function defined in D {i.e., it is the "system program").
Norma!ly the result is a pair

Iz(SYSTEM:x) = (o,d)

where o is the system output that results from input x and d becomes
the new state D for the system's next input. Usually d will be a copy
or partly changed copy of the old state. If is(SYSTEM:x) is not a pair,
the output is an error message and the state remains unchanged.

14.3.2 Transition Rules: Exception Conditions and Startup.
Once an input has been accepted, our system will not accept another
{except (RESET, x), see below) until an output has been issued and
the new state, if any, installed. The system will accept the input
(RESET, x) at any time. There are two cases: {a) if SYSTEM is defined
in the current state D, then the system aborts its current computation
without altering D and treats x as a new normal input; {b) if SYSTEM
is not defined in D, then x is appended to D as its first element.
{This ends the complete description of the transition rules for our
elementary AST system.)

If SYSTEM is defined in D it can always prevent any change in
its own definition. If it is not defined, an ordinary input x will produce
#(SYSTEM:x) = ± and the transition rules yield an error message and
an unchanged state; on the other hand, the input (RESET, (CELL,
SYSTEM, s)) will define SYSTEM to be s.

14.3.3 Program Access to the State; the Function pDEFS. Our
FFP subsystem is required to have one new primitive function, defs,
named DEFS such that for any object x ~ ±,

defs:x = pDEFS:x = D

where D is the current state and set of definitions of the AST system.
This function allows programs access to the whole state for any purpose,
including the essential one of computing the successor state.

1 4 . 4
An Example of a S y s t e m P r o g r a m

The above description of our elementary AST system, plus the FFP
subsystem and the FP primitives and functional forms of earlier
sections, specify a complete history-sensitive computing system. Its
input and output behavior is limited by its simple transition rules,

118 JOHN BACKUS

but otherwise it is a powerful system once it is equipped with a suitable
set of definitions. As an example of its use we shall describe a small
system program, its installation, and operation.

Our example system program will handle queries and updates
for a file it maintains, evaluate FFP expressions, run general user
programs that do not damage the file or the state, and allow authorized
users to change the set of definitions and the system program itself.
All inputs it accepts will be of the form (key,input) where key is
a code that determines both the input class (system-change, expression,
program, query, update) and also the identity of the user and his authority
to use the system for the given input class. We shall not specify a
format for key. Input is the input itself, of the class given by key.

1 9 7 7

'1 i | | ' h | ~
A ~ a , d
|A'I. l u l l '

14.4.1 G e n e r a l P l a n of t h e Sys tem P ro g ram . The state D of our
AST system will contain the definitions of all nonprimit ive functions
needed for the system program and for users' programs. (Each defini-
tion is in a cell of the sequence D.} In addition, there will be a cell
in D named FILE with contents file, which the system maintains.
We shall give FP definitions of functions and later show how to get
them into the system in their FFP form. The transition rules make
the input the operand of SYSTEM, but our plan is to use name-functions
to refer to data, so the first thing we shall do with the input is to
create two cells named KEY and INPUT with contents key and input
and append these to D. This sequence of cells has one each for key,
input, and file; it will be the operand of our main function called
subsystem. Subsystem can then obtain key by applying TKEY to its
operand, etc. Thus the definit ion

Def system -= pair ~ subsystemof; [NONPAIR, defs]

where

f ~ $INPUTo[2, *KEyo[1, defs]]

causes the system to output NONPAIR and leave the state unchanged
if the input is not a pair. Otherwise, if it is (key,input), then

f: (key, input) = ((CELL, INPUT, input),
(CELL,KEY, key), d, dn)

where D = (dl dn). (We might have constructed a different
operand than the one above, one with just three cells, for key, input,
and file. We did not do so because real programs, unlike subsystem,
would contain many name functions referring to data in the state,
and this "s tandard" construction of the operand would suffice then
as well.)

A Functional Style and Its Algebra of Programs 119

14.4.2 The " S u b s y s t e m " Func t i on . We now give the FP defini-
tion of the function subsystem, followed by brief explanations of its
six cases and auxiliary functions.

Def subsystem

is-system-change o t K E Y ~ [report-change, apply] o [tINPUT, defs];
is-expression o t K E Y ~ [tINPUT, defs];
is-program o t K E Y ~ system-check °apply o [tINPUT, defs] ;
is-query o tKEY-~ [query-response o [tINPUT, $FILE], defs] ;
is-update o t K E Y ~

[report-update, $FILE o [update, defs]] o [tINPUT, tFILE] ;
[report-error o [tKEY, tINPUT], defs].

This subsystem has five " p ~ f ; " clauses and a final default function,
for a total of six classes of inputs; the t reatment of each class is given
below. Recall that the operand of subsystem is a sequence of cells
containing key, input, andfile as well as all the defined functions of D,
and that subsystem: operand = (output ,newstate) .

Defaul t inputs. In this case the result is given by the last {default I
function of the definition when key does not satisfy any of the preceding
clauses. The output is report-error:(key,input). The state is un-
changed since it is given by defs: operand = D. tWe leave to the reader's
imagination what the function report-error will generate from its
operand.I

System-change inputs. When

is-system-change o tKEY:operand = is-system-change:key = T,

key specifies that the user is authorized to make a system change and
that input = tINPUT: operand represents a function f t h a t is to be applied
to D to produce the new state f: D. IOf course f: D can be a useless new
state; no constraints are placed on it.) The output is a report, namely,
report-change: (input, D) .

Expression inputs. When is-expression :key = T, the system under-
stands that the output is to be the meaning of the FFP expression
input; tINPUT: operandproduces it and it is evaluated, as are all expres-
sions. The state is unchanged.

Program inputs and system self-protection. When is-program: key = T,
both the output and new state are given by (pinput):D = (output,
newstate). If newstate contains file in suitable condition and the defini-
tions of system and other protected functions, then system-check:
(output ,newstate l = (output ,newstate) . Otherwise, system-check : (output,
newstate) = (error-report,D).

120 JOHN BACKUS

Although program inputs can make major, possibly disastrous changes
in the state when it produces newstate, system-check carl use any criteria
to either allow it to become the actual new state or to keep the old.
A more sophisticated system-check might correct only prohibited
changes in the state. Functions of this sort are possible because they
can always access the old state for comparison with the new state-to-
be and control what state transition will finally be allowed.

I ~) 7 7

' l u r i n ~

t ~ ~11||

I.L' l i ,an t'

File query inputs. If is-query:key = T, the function query-response
is designed to produce the output = answer to the query input from
its operand (input, file).

File update inputs. If is-update:key = T, input specifies a file trans-
action understood by the function update, which computes updated-
file = update: (input, filel. Thus $FILE has (updated-file, D) as its operand
and thus stores the updated file in the cell FILE in the new state. The
rest of the state is unchanged. The function report-update generates
the output from its operand (input, file).

14.4.3 Instal l ing the System Program. We have described the
function called system by some FP definitions {using auxiliary functions
whose behavior is only indicated}. Let us suppose that we have FP
definitions for all the nonprimitive functions required. Then each
definition can be converted to give the name and contents of a cell
in D {of course this conversion itself would be done by a better system}.
The conversion is accomplished by changing each FP function name
to its equivalent atom {e.g., update becomes UPDATE} and by re-
placing functional forms by sequences whose first member is the
controlling function for the particular form. Thus *FILE o [update, defs]
is converted to

< COMP,(STORE,FILE), (CONS, UPDATE,DEFS))

and the FP function is the same as that represented by the FFP object,
provided that update ~ oUPDATE and COMP, STORE, and CONS rep-
resent the controlling functions for composition, store, and construction.

All FP definitions needed for our system can be converted to cells
as indicated above, giving a sequence Do. We assume that the AST
system has an empty state to start with; hence SYSTEM is not defined.
We want to define SYSTEM initially so that it will install its next
input as the state; having done so we can then input Do and all our
definitions will be installed, including our program--system--itself.
To accomplish this we enter our first input

(RESET, (CELL, SYSTEM, loader))

where

loader ~ (CONS, ((CONST, DONE) ,ID) .

A Functional Style and Its Algebra of Programs 121

Then, by the transition rule for R E S E T w h e n SYSTEM is undef ined in
D, the cell in our input is put at the head of D = ~, thus defining
pSYSTEM ~ ploader ~ [DONE,id]. Our second input is Do, the set of
definitions we wish to become the state. The regular transition rule
causes the AST system to evaluate

g(SYSTEM:Do) = [DONE,id]:Do = (DONE,Do).

Thus the output f rom our second input is DONE, the new state is Do,
and pSYSTEM is now our system program {which only accepts inputs
of the form (key,input)).

Our next task is to load the file (we are given an initial value file).
To load it we input a program into the newly installed system that
contains file as a constant and stores it in the state; the input is

~program-key, [DONE, store-file]

where

pstore-file ~ +FILE o [file, id].

Program-key identifies [DONE,store-file] as a program to be applied to
the state Do to give the output and new state D1 which is

Ostore-file : D o = ~ FILE o [file, id] : D o,

or Do with a cell containing file at its head. The output is

DONE: Do = DONE.

We assume that system-check will pass (DONE, D 1> unchanged. FP ex-
pressions have been used in the above in place of the FFP objects

they denote, e.g., DONE for (CONST, DONE>.

14.4.4 Using t he S y s t e m . We have not said how the system's
file, queries, or updates are structured, so we cannot give a detailed
example of file operations. However , the structure of subsystem shows
clearly how the system's response to queries and updates depends
on the functions query-response, update, and report-update.

Let us suppose that matrices m, n named M, and N are stored in
D and that the function MM described earlier is defined in D. Then
the input

(expression-key, (MMo [?M, TN] oDEFS: #))

would give the product of the two matrices as output and an unchanged
state. Expression-key identifies the application as an expression to be

122 JOHN BACKUS

evaluated and since defs: # = D and [I"M,~N]:D = (re,n), the value
of the expression is the result MM:(m,n), which is the output.

Our miniature system program has no provision for giving control
to a user's program to process many inputs, but it would not be dif-
ficult to give it that capability while still monitoring the user's program
with the option of taking control back.

1 9 7 7
'1 u , i n g
/% %%'11 i'll

Lei'lure

14.5

Variants
o[AST Systems

A major extension of the AST systems suggested above would
provide combining forms, "system forms," for building a new AST
system from simpler, component AST systems. That is, a system form
would take AST systems as parameters and generate a new AST system,
just as a functional form takes functions as parameters and generates
new functions. These system forms would have properties like those
of functional forms and would become the "operations" of a useful
"algebra of systems" in much the same way that functional forms are
the "operations" of the algebra of programs. However, the problem of
finding useful system forms is much more difficult, since they must
handle RESETS, match inputs and outputs, and combine history-
sensitive systems rather than fixed functions.

Moreover, the usefulness or need for system forms is less clear than
that for functional forms. The latter are essential for building a great
variety of functions from an initial primitive set, whereas, even without
system forms, the facilities for building AST systems are already so rich
that one could build virtually any system (with the general input and
output properties allowed by the given AST scheme). Perhaps system
forms would be useful for building systems with complex input and
output arrangements.

14 .6

Remarks
about AST Systems

As I have tried to indicate above, there can be innumerable variations
in the ingredients of an AST system--how it operates, how it deals with
input and output, how and when it produces new states, and so on.
In any case, a number of remarks apply to any reasonable AST system:

(a) A state transition occurs once per major computation and can
have useful mathematical properties. State transitions are not involved
in the tiniest details of a computation as in conventional languages;
thus the linguistic von Neumann bottleneck has been eliminated. No
complex "cable" or protocols are needed to communicate with the
state.

A Functional Style and Its Algebra of Programs 123

(b) Programs are written in an applicative language that can accom-
modate a great range of changeable parts, parts whose power and
flexibility exceed that of any von Neumann language so far. The word-
at-a-time style is replaced by an applicative style; there is no division
of programming into a world of expressions and a world of statements.
Programs can be analyzed and optimized by an algebra of programs.

(c) Since the state cannot change during the computation of
system :x, there are no side effects. Thus independent applications can
be evaluated in parallel.

(d) By defining appropriate functions one can, I believe, introduce
major new features at any time, using the same framework. Such
features must be built into the framework of avon Neumann language.
I have in mind such features as: "stores" with a great variety of naming
systems, types and type checking, communicating parallel processes,
nondeterminacy and Dijkstra's "guarded command" constructs [8],
and improved methods for structured programming.

(e) The framework of an AST system comprises the syntax and
semantics of the underlying applicative system plus the system
framework sketched above. By current standards, this is a tiny
framework for a language and is the only fixed part of the system.

14 .7

N a m i n g Systems in A S T
and yon N e u m a n n Models

In an AST system, naming is accomplished by functions as indicated
in Section 13.3.3. Many useful functions for altering and accessing
a store can be defined (e.g., push, pop, purge, typed fetch, etc.). All
these definitions and their associated naming systems can be intro-
duced without altering the AST framework. Different kinds of "stores"
(e.g., with "typed cells") with individual naming systems can be used
in one program. A cell in one store may contain another entire store.

The important point about AST naming systems is that they utilize
the functional nature of names {Reynolds' GEDANKEN [19] also does
so to some extent within a yon Neumann framework). Thus name
functions can be composed and combined with other functions by
functional forms. In contrast, functions and names in yon Neumann
languages are usually disjoint concepts and the function-like nature
of names is almost totally concealed and useless, because (a) names
cannot be applied as functions; (b) there are no general means to
combine names with other names and functions; (c) the objects to
which name functions apply (stores) are not accessible as objects.

The failure of yon Neumann languages to treat names as functions
may be one of their more important weaknesses. In any case, the
ability to use names as functions and stores as objects may turn out
to be a useful and important programming concept, one which should
be thoroughly explored.

124 JOHN BACKUS

15
Remarks

about Computer Design
The dominance of yon Neumann languages has left designers with

few intellectual models for practical computer designs beyond varia-
tions of the yon Neumann computer. Data flow models [1], [7], [13]
are one alternative class of history-sensitive models. The substitution
rules of lambda-calculus-based languages present serious problems for
the machine designer. Berkling [3] has developed a modified lambda
calculus that has three kinds of applications and that makes renaming
of variables unnecessary. He has developed a machine to evaluate
expressions of this language. Further experience is needed to show how
sound a basis this language is for an effective programming style and
how efficient his machine can be.

Mag6 [15] has developed a novel applicative machine built from
identical components (of two kinds). It evaluates, directly, FP-like and
other applicative expressions from the bottom up. It has no yon
Neumann store and no address register, hence no bottleneck; it is
capable of evaluating many applications in parallel; its built-in opera-
tions resemble FP operators more than yon Neumann computer opera-
tions. It is the farthest departure from the yon Neumann computer that
I have seen.

There are numerous indications that the applicative style of program-
ming can become more powerful than the yon Neumann style.
Therefore it is important for programmers to develop a new class of
history-sensitive models of computing systems that embody such a style
and avoid the inherent efficiency problems that seem to attach to
lambda-calculus-based systems. Only when these models and their ap-
plicative languages have proved their superiority over conventional
languages will we have the economic basis to develop the new kind
of computer that can best implement them. Only then, perhaps, will
we be able to fully utilize large-scale integrated circuits in a computer
design not limited by the yon Neumann bottleneck.

I 9 7 7

'h , r lng
Awa,d
I .¢ ' t 'h l l't"

16
Summary

The fifteen preceding sections of this paper can be summarized as
follows.

Sect ion 1. Conventional programming languages are large, com-
plex, and inflexible. Their limited expressive power is inadequate to
justify their size and cost.

Section 2. The models of computing systems that underlie program-
ming languages fall roughly into three classes: (a) simple operational
models (e.g., Turing machines), (b) applicative models (e.g., the lambda

A Functional Style and Its Algebra of Programs 125

calculus), and (c) von Neumann models {e.g., conventional computers
and programming languages). Each class of models has an important
difficulty: The programs of class (a) are inscrutable~ class (b) models
cannot save information from one program to the next; class (c) models
have unusable foundations and programs that are conceptually
unhelpful.

Sect ion 3. Von Neumann computers are built around a bottleneck:
the word-at-a-time tube connecting the CPU and the store. Since a
program must make its overall change in the store by pumping vast
numbers of words back and forth through the von Neumann bottleneck,
we have grown up with a style of programming that concerns itself with
this word-at-a-time traffic through the bottleneck rather than with the
larger conceptual units of our problems.

Sect ion 4. Conventional languages are based on the programming
style of the von Neumann computer. Thus variables = storage cells;
assignment statements = fetching, storing, and arithmetic; control
statements = jump and test instructions. The symbol " : = " is the
linguistic von Neumann bottleneck. Programming in a conventional--
von N e u m a n n - language still concerns itself with the word-at-a-time
traffic through this slightly more sophisticated bottleneck. Von
Neumann languages also split programming into a world of expressions
and a world of statements~ the first of these is an orderly world, the
second is a disorderly one, a world that structured programming has
simplified somewhat, but without attacking the basic problems of the
split itself and of the word-at-a-time style of conventional languages.

Sect ion 5. This section compares a v o n Neumann program and
a functional program for inner product. It illustrates a number of
problems of the former and advantages of the latter: e.g., the von
Neumann program is repetitive and word-at-a-time, works only for
two vectors named a and b of a given length n, and can only be made
general by use of a procedure declaration, which has complex seman-
tics. The functional program is nonrepetitive, deals with vectors as
units, is more hierarchically constructed, is completely general, and
creates "housekeeping" operations by composing high-level house-
keeping operators. It does not name its arguments, hence it requires
no procedure declaration.

Sect ion 6. A programming language comprises a framework plus
some changeable parts. The framework of a v o n Neumann language
requires that most features must be built into it; it can accommodate
only limited changeable parts [e.g., user-defined proceduresl because
there must be detailed provisions in the "state" and its transition rules
for all the needs of the changeable parts, as well as for all the features
built into the framework. The reason the von Neumann framework is
so inflexible is that its semantics is too closely coupled to the state: every
detail of a computation changes the state.

126 JOHN BACKUS

Sec t ion 7. The changeable parts of von Neumann languages have
little expressive power; this is why most of the language must be built
into the framework. The lack of expressive power results from the
inability of yon Neumann langUages to effectively use combining forms
for building programs, which in turn results from the split between
expressions and statements. Combining forms are at their best in
expressions, but in von Neumann languages an expression can only
produce a single word; hence expressive power in the world of expres-
sions is mostly lost. A further obstacle to the use of combining forms
is the elaborate use of naming conventions.

Sect ion 8. APL is the first language not based on the lambda
calculus that is not word-at-a-time and uses functional combining forms.
But it still retains many of the problems of von Neumann languages.

Sect ion 9. Von Neumann languages do not have useful properties
for reasoning about programs. Axiomatic and denotational semantics
are precise tools for describing and understanding conventional pro-
grams, but they only talk about them and cannot alter their ungainly
properties. Unlike von Neumann languages, the language of ordinary
algebra is suitable both for stating its laws and for transforming an
equation into its solution, all within the "language."

Sect ion 10. In a history-sensitive language, a program can affect
the behavior of a subsequent one by changing some store which is
saved by the system. Any such language requires some kind of state
transition semantics. But it does not need semantics closely coupled
to states in which the state changes with every detail of the computa-
tion. "Applicative state transition" (AST} systems are proposed as
history-sensitive alternatives to von Neumann systems. These have:
(a) loosely coupled state-transition semantics in which a transition
occurs once per major computation; (b) simple states and transition
rules; (c) an underlying applicative system with simple "reduction"
semantics; and (d) a programming language and state transition rules
both based on the underlying applicative system and its semantics. The
next four sections describe the elements of this approach to non-von
Neumann language and system design.

Sect ion 11. A Class of informal functional programming (FP)
systems is described which use no variables. Each system is built
from objects, functions, functional forms, and definitions. Functions
map objects into objects. Functional forms combine existing functions
to form new ones. This section lists examples of primitive functions
and functional forms and gives sample programs. It discusses the
limitations and advantages of FP systems.

Sect ion 12. An "algebra of programs" is described whose variables
range over the functions of an FP system and whose "operations"
are the functional forms of the system. A list of some twenty-four

1 9 7 7

"lUrlng
Aw~IHI
I , t ' c l I l l ' t"

A Functional Style and Its Algebra of Programs 127

laws of the algebra is followed by an example proving the equivalence
of a nonrepetitive matrix multiplication program and a recursive one.
The next subsection states the results of two "expansion theorems"
that "solve" two classes of equations. These solutions express the
"unknown" function in such equations as an infinite conditional ex-
pansion that constitutes a case-by-case description of its behavior
and immediately gives the necessary and sufficient conditions for
termination. These results are used to derive a "recursion theorem"
and an "iteration theorem," which provide ready-made expansions
for some moderately general and useful classes of "linear" equations.
Examples of the use of these theorems treat: (a) correctness proofs for
recursive and iterative factorial functions, and (b) a proof of equivalence
of two iterative programs. A final example deals with a "quadratic"
equation and proves that its solution is an idempotent function. The
next subsection gives the proofs of the two expansion theorems.

The algebra associated with FP systems is compared with the
corresponding algebras for the lambda calculus and other applicative
systems. The comparison shows some advantages to be drawn from
the severely restricted FP systems, as compared with the much more
powerful classical systems. Questions are suggested about algorithmic
reduction of functions of infinite expansions and about the use of the
algebra in various "lazy evaluation" schemes.

Section 13. This section describes formal functional programming
(FFP) systems that extend and make precise the behavior of FP systems.
Their semantics are simpler than that of classical systems and can be
shown to be consistent by a simple fixed-point argument.

Section 14. This section compares the structure of Algol with that
of applicative state transition (AST) systems. It describes an AST system
using an FFP system as its applicative subsystem. It describes the simple
state and the transition rules for the system. A small self-protecting
system program for the AST system is described, and how it can be
installed and used for file maintenance and for running user programs.
The section briefly discusses variants of AST systems and functional
naming systems that can be defined and used within an AST system.

Section 15. This section briefly discusses work on applicative
computer designs and the need to develop and test more practical
models of applicative systems as the future basis for such designs.

Acknowledgments
In earlier work relating to this paper I have received much valuable

help and many suggestions from Paul R. McJones and Barry K. Rosen.
I have had a gret deal of valuable help and feedback in preparing this
paper. James N. Gray was exceedingly generous with his time and
knowledge in reviewing the first draft. Stephen N. Zillis also gave it

128 JOHN BACKUS

a careful reading. Both made many valuable suggestions and criticisms
at this difficult stage. It is a pleasure to acknowledge my debt to them.
I also had helpful discussions about the first draft with Ronald Fagin,
Paul R. McJones, and James H. Morris, Jr. Fagin suggested a number
of improvements in the proofs of theorems.

Since a large portion of the paper contains technical material, I asked
two distinguished computer scientists to referee the third draft. David
J. Gries and John C. Reynolds were kind enough to accept this burden-
some task. Both gave me large, detailed sets of corrections and overall
comments that resulted in many improvements , large and small, in
this final version (which they have not had an opportuni ty to review).
I am truly grateful for the generous time and care they devoted to
reviewing this paper.

Finally, I also sent copies of the third draft to Gyula A. Mag6, Peter
Naur, and John H. Williams. They were kind enough to respond with
a number of extremely helpful comments and corrections. Geoffrey A.
Frank and Dave Tolle at the Universi ty of North Carolina reviewed
Mag6's copy and pointed out an important error in the definition of
the semantic function of FFP systems. My grateful thanks go to all these
kind people for their help.

1 9 7 7

'1 I I ISi l ig

I .~ ' (' l I I Iml"

R e f e r e n c e s
1. Arvind, and Gostelow, K. P. A new interpreter for data flow schemas

and its implications for computer architecture. Tech. Rep. No. 72, Dept.
Comptr. Sci., U. of California, Irvine, Oct. 1975.

2. Backus, J. Programming language semantics and closed applicative
languages. Conf. Record ACM Symp. on Principles of Programming
Languages, Boston, Oct. 1973, 71-86.

3. Berkling, K. J. Reduction languages for reduction machines. Interner
Bericht ISF-76-8, Gesellschaft ffir Mathematik und Datenverarbeitung
MBH, Bonn, Sept. 1976.

4. Burge, W. H. Recursive Programming Techniques. Addison-Wesley,
Reading, Mass., 1975.

5. Church, A. The Calculi o[Lambda-Conversion. Princeton U. Press,
Princeton, N.J., 1941.

6. Curry, H. B., and Feys, R. Combinatory Logic, Vol. I. North-Holland Pub.
Co., Amsterdam, 1958.

7. Dennis, J. B. First version of a data flow procedure language. Tech. Mem.
No. 61, Lab. for Comptr. Sci., M.I.T., Cambridge, Mass., May 1973.

8. Dijkstra, E. W. A Discipline o[Programming. Prentice-Hall, Englewood
Cliffs, N.J., 1976.

9. Friedman, D. P., and Wise, D.S. CONS should not evaluate its arguments.
In Automata, Languages and Programming, S. Michaelson and R. Milner,
Eds., Edinburgh U. Press, Edinburgh, 1976, pp. 257-284.

10. Henderson, P., and Morris, J. H. Jr. A lazy evaluator. Conf. Record 3rd
ACM Symp. on Principles of Programming Languages, Atlanta, Ga., Jan.
1976, pp. 95-103.

A Functional Style and Its Algebra of Programs 129

11. Hoare, C. A. R. An axiomatic basis for computer programming. Comm.
ACM 12, 10 {Oct. 19691, 576-583.

12. Iverson, K. A Programming Language. Wiley, New York, 1962.
13. Kosinski, P. A data flow programming language. Rep. RC 4264, IBM

T. J. Watson Research Ctr., Yorktown Heights, N.Y., March 1973.
14. Landin, P. J. The mechanical evaluation of expressions. Computer J,

6, 4 {1964}, 308-320.
15. Magd, G. A. A network of microprocessors to execute reduction

languages. To appear in Int. J. Comptt" and Inform. Sci.
16. Manna, Z., Ness, S., and Vuillemin Ji Inductive methods for proving

properties of programs. Comm. ACM 16, 8 {Aug. 1973}, 491-502.
17. McCarthy, J. Recursive functions of symbolic expressions and their

computation by machine, Pt. 1. Comm. ACM3, 4 {April 1960}, 184-195.
18. McJones, P. A Church-Rosser property of closed applicative languages,

Rep. RJ 1589, IBM Res. Lab., San Jose, Calif., May 1975.
19. Reynolds, J. C. GEDANKEN--a simple typeless language based on the

principle of completeness and the reference concept. Comm. ACM 13,
5 {May 1970}, 308-318.

20. Reynolds, J. C. Notes on a lattice-theoretic approach to the theory of
computation. Dept. Syst. and Inform. Sci., Syracuse U., Syracuse, N.Y.,
1972.

21. Scott, D. Outline of a mathematical theory of computation. Proc. 4th
Princeton Conf. on Inform. Sci. and Syst., 1970.

22. Scott, D., Lattice-theoretic models for various types-free calculi. Proc.
4th Int. Congress for Logic, Methodology, and the Philosophy of Science,
Bucharest, 1972.

23. Scott, D., and Strachey, C. Towards a mathematical semantics for
computer languages. Proc. Symp. on Comptrs. and Automata,
Polytechnic Inst. of Brooklyn, 1971.

Categories and Subject Descriptors:
C.1.1 [Processor Architectures]: Single Data Stream Architectures--yon
Neumann architectures; D.1.1 [Programming Techniques]: Applicative
{Functional Programming; D.2.4 [Software Engineering]: Program
Verification-- correctness proofs; D.3.1 [Programming Languages]: Formal
Definitions and Theory--semantics; F.4.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic--lambda calculus and related systems;
G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear systems;
G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations--iterative
methods

General Terms:
Design, Economics, Languages, Theory

Additional Key Words and Phrases:
Algol, APL, metacomposition

130 JOHN BACKUS

