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The 1981 ACM Turing Award was presented to Edgar E Codd, an IBM 
Fellow of the San Jose Research Laboratory, by President Peter Denning 
on November 9, 1981, at the ACM Annual Conference in Los Angeles, 
California. It is the Association's foremost award for technical contributions 
to the computing community. 

Codd was selected by the ACM General Technical Achievement Award 
Committee for his "~undamental and continuing contributions to the theory 
and practice of database management systems." The originator of the 
relational model for databases, Codd has made further important contribu- 
tions in the development of relational algebra, relational calculus, and 
normalization of relations. 

Edgar E Coddjoined IBM in 1949 to prepare programs for the Selective 
Sequence Electronic Calculator. Since then, his work in computing has 
encompassed logical design of computers [IBM 701 and Stretch], managing 
a computer center in Canada, heading the development of one of the 
first operating systems with a general multiprogramming capability, con- 

Author's present address: Codd & Date Consulting Group, RO. Box 20038, San Jose, CA 
95160. 

391 



tributing to the logic of self-reproducing automata, developing high level 
techniques for software specilication, creating and extending the relational 
approach to database management, and developing an English analyzing 
and synthesizing subsystem for casual users of relational databases. He is 
also the author of Cellular  Automata ,  an early volume in the ACM 
Monograph Series. 

Codd received his B.A. and M.A. in Mathematics from Oxford Univer- 
sity in England, and his M.Sc. and Ph.D. in Computer and Communication 
Sciences from the University of Michigan. He is a Member of the 
National Academy of Engineering [USA] and a Fellow of the British Com- 
puter Society. 

The ACM Taring Award is presented each year in commemoration of 
A. M. Taring, the English mathematician who made major contributions 
to the computing sciences. 

It is well known that the growth in demands from end users for new applications 
is outstripping the capability of data processing departments to implement the 
corresponding application programs. There are two complementary approaches 
to attacking this problem land both approaches are needed): one is to put end users 
into direct touch with the information stored in computers; the other is to increase 
the productivity of data processing professionals in the development of applica- 
tion programs. It is less well known that a single technology, relational database 
management, provides a practical foundation for both approaches. It is explained 
why this is so. 

While developing this productivity theme, it is noted that the time has come 
to draw a very sharp line between relational and nonrelational database systems, 
so that the label "relational" will not be used in misleading ways. The key to 
drawing this line is something called a "relational processing capability." 

1 
I n t r o d u c t i o n  

It is genera l ly  admi t t ed  that  there  is a p roduc t iv i ty  crisis in the  
d e v e l o p m e n t  of  " r u n n i n g  code"  for  c o m m e r c i a l  and  indust r ia l  ap- 
plications.  The  g r o w t h  in end  user  d e m a n d s  for n e w  appl ica t ions  
is ou ts t r ipp ing  the  capabi l i ty  of  data  p rocess ing  d e p a r t m e n t s  to imple-  
m e n t  the c o r r e s p o n d i n g  appl ica t ion  p rograms .  In  the late sixties and  
ear ly  sevent ies  m a n y  people  in the  c o m p u t i n g  field h o p e d  that  the 
in t roduc t ion  of  da tabase  m a n a g e m e n t  sys t ems  {commonly  abbrev ia ted  
DBMS} w o u l d  m a r k e d l y  increase  the  p roduc t iv i ty  of  appl ica t ion  pro- 
g r a m m e r s  by  r e m o v i n g  m a n y  of their  p r o b l e m s  in hand l ing  input  and  
ou tpu t  files. DBMS {along wi th  data  dict ionaries)  appea r  to have  b e e n  
h ighly  successfu l  as i n s t rum e n t s  of  data  control ,  arkd they  did r e m o v e  
m a n y  of  the file hand l ing  details  f r o m  the c o n c e r n  of  appl ica t ion  
p rog ramme rs .  W h y  then  have  they  failed as p roduc t iv i ty  boosters?  

There  are three  pr inc ipa l  reasons:  

(1) These  sys tems  b u r d e n e d  appl icat ion p r o g r a m m e r s  wi th  n u m e r -  
ous  concep t s  tha t  were  i r re levant  to their  da ta  retr ieval  and  man ipu la -  
t ion tasks, forc ing t h e m  to th ink  and  code at a need less ly  low level 
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of structural detail (the "owner-member set" of CODASYL DBTG is an 
outstanding example ~); 

(2) No commands were provided for processing multiple records 
at a t ime-- in  other words, DBMS did not support set processing and, 
as a result, programmers were forced to think and code in terms of 
iterative loops that were often unnecessary (here we use the word "set" 
in its traditional mathematical sense, not the linked structure sense of 
CODASYL DBTG}; 

{3} The needs of end users for direct interaction with databases, par- 
ticularly interaction of an unanticipated nature, were inadequately 
recognized--a query capability was assumed to be something one could 
add on to a DBMS at some later time. 

Looking back at the database management systems of the late sixties, 
we may readily observe that there was no sharp distinction between 
the programmer's (logical} view of the data and the (physical} representa- 
tion of data in storage. Even though what was called the logical level 
usually provided protection from placement expressed in terms of 
storage addresses and byte offsets, many storage-oriented concepts were 
an integral part of this level. The adverse impact on development 
productivity of requiring programmers to navigate along access paths 
to reach the target data (in some cases having to deal directly with the 
layout of data in storage and in others having to follow pointer chains} 
was enormous. In addition, it was not possible to make slight changes 
in the layout in storage without simultaneously having to revise all 
programs that relied on the previous structure. The introduction of an 
index might have a similar effect. As a result, far too much manpower 
was being invested in continual (and avoidable) maintenance of applica- 
tion programs. 

Another consequence was that installation of these systems was 
often agonizingly slow, due to the large amount of time spent in 
learning about the systems and in planning the organization of the 
data at both logical and physical levels, prior to database activation. 
The aim of this preplanning was to "get it right once and for all" 
so as to avoid the need for subsequent changes in the data description 
that, in turn, would force coding changes in application programs. 
Such an objective was, of course, a mirage, even if sound principles 
for database design had been known at the time (and, of course, they 
were not}. 

To show how relational database management systems avoid the 
three pitfalls cited above, we shall first review the motivation of the 
relational model and discuss some of its features. We shall then classify 

1The crux of the  p rob lem wi th  the  CODASYL DBTG o w n e r - m e m b e r  set is that  it 
combines  into one construct  three  orthogonal  concepts:  one- to-many relationship, 
existence dependency,  and  a user-visible l inked s t ruc ture  to be t raversed  by application 
programs.  It is that  last of these  three  concepts  that  places a heavy  and  unnecessa ry  
navigation burden  on application programmers.  It also presents  an insurmountable  obstacle 
for end users.  
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systems that are based upon that model. As we proceed, we shall stress 
application programmer productivity, even though the benefits for end 
users are just as great, because much has already been said 
and demonstrated regarding the value of relational database to end 
users Isee [23] and the papers cited therein). 

2 
M o t i v a t i o n  

The most important motivation for the research work that resulted 
in the relational model was the objective of providing a sharp and clear 
boundary between the logical and physical aspects of database manage- 
ment lincluding database design, data retrieval, and data manipulation I. 
We call this the data independence objective. 

A second objective was to make the model structurally simple, so 
that all kinds of users and programmers could have a common 
understanding of the data, and could therefore communicate  with one 
another about the database. We call this the communicability objective. 

A third objective was to introduce high-level language concepts Ibut 
not specific syntax I to enable users to express operations upon large 
chunks of information at a time. This entailed providingaJfoundation 
for set-oriented processing li.e., the ability to express in a single state- 
ment  the processing of multiple sets of records at a timel. We call this 
the set-processing objective. 

There were other objectives, such as providing a sound theoretical 
foundation for database organization and management,  but these 
objectives are less relevant to our present productivity theme. 

3 
T h e  R e l a t i o n a l  M o d e l  

To satisfy these three objectives, it was necessary to discard all those 
data structuring concepts le.g., repeating groups, linked structuresl 
that were not familiar to end users and to take a fresh look at the 
addressing of data. 

Positional concepts have always played a significant role in com- 
puter addressing, beginning with plugboard addressing, then absolute 
numeric addressing, relative numeric addressing, and symbolic address- 
ing with arithmetic properties le.g., the symbolic address A + 3 in 
assembler languagel the address X(I + 1, J - 2) of an element in a 
Fortran, Algol, or PL/I array named X I. In the relational model we 
replace positional addressing by totally associative addressing. Every 
datum in a relational database can be uniquely addressed by means 
of the relation name, primary key value, and attribute name. Associative 
addressing of this form enables users (yes, and even programmers also!) 
to leave it to the system to (1} determine the details of placement of 
a new piece of information that is being inserted into a database and 
(2} select appropriate access paths when  retrieving data. 
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All information in a relational database is represented by values in 
tables (even table names appear as character strings in at least one table). 
Addressing data by value, rather  than by position, boosts the producti- 
vity of programmers  as well as end users (positions of items in se- 
quences are usually subject to change and are not easy for a person to 
keep track of, especially if the sequences contain many  items). More- 
over, the fact that programmers  and end users all address data in the 
same way goes a long way to meeting the communicabi l i ty  objective. 

The n-ary relation was chosen as the single aggregate structure for 
the relational model, because with appropriate operators and an ap- 
propriate conceptual  representat ion (the table) it satisfies all three of 
the cited objectives. Note that an n-ary relation is a mathematical  set, 
in which the ordering of rows is immaterial.  

Sometimes the following questions arise: Why call it the relational 
model? Why not call it the tabular model? There  are two reasons: (1) 
At the time the relational model  was introduced, many  people in data 
processing felt that a relation (or relationship) among two or more ob- 
jects must be represented by a linked data structure (so the name was 
selected to counter  this misconception); (2) tables are at a lower level 
of abstraction than relations, since they give the impression that posi- 
tional (array-type) addressing is applicable (which is not true of n-ary 
relations), and they fail to show that the information content  of a table 
is independent  of row order. Nevertheless, even with these minor flaws, 
tables are the most important  conceptual  representat ion of relations, 
because they are universally understood.  

Incidentally, if a data model  is to be considered as a serious alter- 
native for the relational model, it too should have a clearly defined con- 
ceptual representat ion for database instances. Such a representat ion 
facilit.ates thinking about the effects of whatever  operations are under  
consideration. It is a requi rement  for p rogrammer  and end-user pro- 
ductivity. Such a representat ion is rarely, if ever, discussed in data 
models that use concepts such as entities and relationships, or in func- 
tional data models. Such models f requent ly  do not have any operators 
either! Nevertheless, they may be useful for certain kinds of data type 
analysis encountered  in the process of establishing a new database, 
especially in the very  early stages of determining a prel iminary infor- 
mal organization. This leads to the question: What is the data model? 

A data model  is, of course, not just a data structure, as many  people 
seem to think. It is natural  that the principal data models are named 
after their principal structures, but that is not the whole story. 

A data model  [9] is a combinat ion of at least three components:  

{ i )  A collection of data structure types (the database building 
blocks); 

(2) A collection of operators or rules of inference, which can be 
applied to any valid instances of the data types listed in (1), to retrieve, 
derive, or modify data f rom any parts of those structures in any 
combinations desired; 
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{3) A collection of general integrity rules, which implicitly or 
explicitly define the set of consistent database states or changes of 
state or both--these rules are general in the sense that they apply to 
any database using this model {incidentally, they may sometimes be 
expressed as insert-update-delete rules). 

The relational model is a data model in this sense, and was the first 
such to be defined. We do not propose to give a detailed definition of 
the relational model here --the original definition appeared in [7], and 
an improved one in Secs. 2 and 3 of [8]. Its structural part consists of 
domains, relations of assorted degrees {with tables as their principal 
conceptual representation), attributes, tuples, candidate keys, and 
primary keys. Under the principal representation, attributes become 
columns of tables and tuples become rows, but there is no notion of 
one column succeeding another or of one row succeeding another as 
far as the database tables are concerned. In other words, the left to right 
order of columns and the top to bottom order of rows in those tables 
are arbitrary and irrelevant. 

The manipulative part of the relational model consists of the algebraic 
operators (select, project, join, etc.) which transform relations into 
relations {and hence tables into tables). 

The integrity part consists of two integrity rules: entity integrity 
and referential integrity (see [8, 11] for recent developments in this 
latter area). In any particular application of a data model it may be 
necessary to impose further (database-specific) integrity constraints, and 
thereby define a smaller set of consistent database states or changes 
of state. 

In the development of the relational model, there has always been 
a strong coupling between the structural, manipulative, and integrity 
aspects. If the structures are defined alone and separately, their 
behavioral properties are not pinned down, infinitely many possibilities 
present themselves, and endless speculation results. It is therefore no 
surprise that attempts such as those of CODASYL and ANSI to develop 
data structure definition language {DDL) and data manipulation 
language {DML) in separate committees have yielded many 
misunderstandings and incompatibilities. 

4 
The Relational 

Processing Capability 
The relational model calls not only for relational structures Iwhich 

can be thought of as tables), but also for a particular kind of set pro- 
cessing called relational processing. Relational processing entails treating 
whole relations as operands. Its primary purpose is loop-avoidance, an 
absolute requirement for end users to be productive at all, and a clear 
productivity booster for application programmers. 
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The SELECT operator {also called RESTRICT} of the relational 
algebra takes one relation {table} as operand and produces a new relation 
{table} consisting of selected tuples {rowsl of the first. The PROJECT 
operator also transforms one relation [table) into a new one, this time, 
however, consisting of selected attributes [columns) of the first. The 
EQUI-JOIN operator takes two relations {tables} as operands and 
produces a third consisting of rows of the first concatenated with rows 
of the second, but only where specified columns in the first and 
specified columns in the second have matching values. If redundancy 
in columns is removed, the operator is called NATURAL JOIN. In what 
follows, we use the term "join" to refer to either the equi-join or the 
natural join. 

The relational algebra, which includes these and other operators, 
is intended as a yardstick of power. It is not intended to be standard 
language, to which all relational systems should adhere. The set- 
processing objective of the relational model is intended to be met by 
means of a data sublanguage z having at least the power of the relational 
algebra without making use of iteration or recursion statements. 

Much of the derivability power of the relational algebra is obtained 
from the SELECT, PROJECT, and JOIN operators alone, provided the 
JOIN is not subject to any implementation restrictions having to do with 
predefinition of supporting physical access paths. A system has an 
unrestricted join capability if it allows joins to be taken wherein any pair 
of attributes may be matched, providing only that they are defined 
on the same domain or data type {for our present purpose, it does 
not matter whether the domain is syntactic or semantic and it does not 
matter whether the data type is weak or strong, but see [10] for cir- 
cumstances in which it does matter}. 

Occasionally, one finds systems in which join is supported only if 
the attributes to be matched have the same name or are supported by 
a certain type of predeclared access path. Such restrictions significant- 
ly impair the power of the system to derive relations from the base rela- 
tions. These restrictions consequently reduce the system's capability 
to handle unanticipated queries by end users and reduce the chances 
for application programmers to avoid coding iterative loops. 

Thus, we say that a data sublanguage L has a relational processing 
capability if the transformations specified by the SELECT, PROJECT, 
and unrestricted JOIN operators of the relational algebra can be 
specified in L without resorting to commands for iteration or recursion. 
For a database management system to be called relational it must 
support: 

{1} Tables without user-visible navigation links between them; 
{21 A data sublanguage with at least this {minimal I relational pro- 

cessing capability. 

ZA data sublanguage is a specialized language for database management, supporting at 
least data definition, data retrieval, insertion, update, and deletion. It need not be com- 
putationally complete; and usually is not. In the context of application programming, 
it is intended to be used in conjunction with one or more programming languages. 
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One consequence of this is that a DBMS that does not support rela- 
tional processing should be considered nonrelational. Such a system 
might be more appropriately called tabular, providing that it supports 
tables without user-visible navigation links between tables. This term 
should replace the term "semi-relational" used in [8], because there 
is a large difference in implementation complexity between tabular 
systems, in which the programmer does his own navigation, and 
relational systems, in which the system does the navigation for him, 
i.e., the system provides automatic navigation. 

The definition of relational DBMS given above intentionally permits 
a lot of latitude in the services provided. For example, it is not required 
that the full relational algebra be supported, and there is no requirement 
in regard to support of the two integrity rules of the relational model 
[entity integrity and referential integrity). Full support by a relational 
system of these latter two parts of the model justifies calling that system 
fully relational [8]. Although we know of no systems that qualify as 
fully relational today, some are quite close to qualifying, and no doubt 
will soon do so. 

In Fig. 1 we illustrate the distinction between the various kinds 
of relational and tabular systems. For each class the extent of shading 
in the S box is intended to show the degree of fidelity of members 
of that class to the structural requirements of the relational model. 

M 

(previously called 

: I, 
M 

~ M 

"~ Relationally 
.~ Complete 

M °& Fully rn-~ 
Relational 

S ! 

FIGURE 1. Classification of DBMS: S, structural; 
M, manipulative; [, inteErity; c, relational completeness; 
m, minimal relational processing capability. 

A similar remark applies to the M box with respect to the manipu- 
lative requirements, and to the I box with respect to the integrity 
requirements. 
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r n  denotes the minimal relational processing capability, c denotes 
relational completeness (a capability corresponding to a two-valued first- 
order predicate logic without nulls}. When the manipulation box M 
is fully shaded, this denotes a capability corresponding to the full rela- 
tional completeness {a capability corresponding to a two-valued 
first-order predicate logic without nulls}. When the manipulation box 
M is fully shaded, this denotes a capability corresponding to the full 
relational algebra defined in [8] (a three-valued predicate logic with a 
single kind of null}. The question mark in the integrity box for each 
class except the fully relational is an indication of the present inade- 
quate support for integrity in relational systems. Stronger support for 
domains and primary keys is needed [10], as well as the kind of facility 
discussed in [14]. 

Note that a relational DBMS may package its relational processing 
capability in any convenient way. For example, in the INGRES system 
of Relational Technology, Inc., the RETRIEVE statement of QUEL [29] 
embodies all three operators {select, project, join} in one statement, in 
such a way that one can obtain the same effect as any one of the 
operators or any combination of them. 

In the definition of the relational model there are several prohibi- 
tions. To cite two examples: user-visible navigation links between tables 
are ruled out, and database information must not be represented (or 
hidden} in the ordering of tuples within base relations. Our experience 
is that DBMS designers who have implemented nonrelational systems 
do not readily understand and accept these prohibitions. By contrast, 
users enthusiastically understand and accept the enhanced ease of 
learning and ease of use resulting from these prohibitions. 

Incidentally, the Relational Task Group of the American National 
Standards Institute has recently issued a report [4] on the feasibility 
of developing a standard for relational database systems. This report 
contains an enlightening analysis of the features of a dozen relational 
systems, and its authors clearly understand the relational model. 
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5 
The Uniform 

Relational Property 
In order to have wide applicability most relational DBMS have a 

data sublanguage which can be interfaced with one or more of the 
commonly used programming languages {e.g., Cobol, Fortran, PL/I, 
APL). We shall refer to these latter languages as host languages. A 
relational DBMS usually supports at least one end-user oriented data 
sublanguage -- sometimes several, because the needs of these users may 
vary. Some prefer string languages such as QUEL or SQL [5], while 
others prefer the screen-oriented two-dimensional data sublanguage of 
Query-by-Example [33]. 
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Now, some relational systems (e.g., System R [6], INGRES [29]) sup- 
port a data sublanguage that is usable in two modes: (l) interactively 
at a terminal and (2) embedded in an application program written in 
a host language. There are strong arguments for such a double-mode data 
sublanguage: 

{1) With such a language application programmers can separately 
debug at a terminal the database statements they wish to incorporate 
in their application p rograms-  people who have used SQL to develop 
application programs claim that the double-mode feature significantly 
enhances their productivity; 

{2) Such a language significantly enhances communication among 
programmers, analysts, end users, database administration staff, etc.; 

(3) Frivolous distinctions between the languages used in these two 
modes place an unnecessary learning and memory burden on those 
users who have to work in both modes. 

The importance of this feature in productivity suggests that relational 
DBMS be classified according to whether they possess this feature or 
not. Accordingly, we call those relational DBMS that support a double- 
mode sublanguage uniform relational. Thus, a uniform relational DBMS 
supports relational processing at both an end-user interface and at an 
application programming interface using a data sublanguage common to 
both interfaces. 

The natural term for all other relational DBMS is nonuniform rela- 
tional. An example of a nonuniform relational DBMS is the TANDEM 
ENCOMPASS [19]. With this system, when retrieving data interactively 
at a terminal, one uses the relational data sublanguage ENFORM {a 
language with relational processing capability). When writing a program 
to retrieve or manipulate data, one uses an extended version of Cobol 
(a language that does not possess the relational processing capability). 
Common to both levels of use are the structures: tables without user- 
visible navigation links between them. 

A question that immediately arises is this: how can a data 
sublanguage with relational processing capability be interfaced with 
a language such as Cobol or PL/I that can handle data one record at 
a time only {i.e., that is incapable of treating a set of records as a 
single operand)? To solve this problem we must separate the following 
two actions from one another: {1) definition of the relation to be 
derived; {2) presentation of the derived relation to the host language 
program. 

One solution (adopted in the Peterlee Relational Test Vehicle [31]) 
is to cast a derived relation in the form of a file that can be read 
record-by-record by means of host language statements. In this case 
delivery of records is delegated to the file system used by the pertinent 
host language. 

Another solution (adopted by System R) is to keep the delivery of 
records under the control of data sublanguage statements and, hence, 
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under the control of the relational DBMS optimizer. A query statement 
Q of SQL (the data sublanguage of System R} may be embedded in a 
host language program, using the following kind of phrase (for ex- 
pository reasons, the syntax is not exactly that of SQL): 

DECLARE C CURSOR FOR Q 

where C stands for any name chosen by the programmer. Such a state- 
ment associates a cursor named C with the defining expression Q. Tuples 
from the derived relation defined by Q are presented to the program 
one at a time by means of the named cursor. Each time a FETCH per 
this cursor is executed, the system delivers another tuple from the deriv- 
ed relation. The order of delivery is system-determined unless the SQL 
statement Q defining the derived relation contains an ORDER BY 
clause. 

It is important to note that in advancing a cursor over a derived 
relation the programmer is not engaging in navigation to some target 
data. The derived relation is itself the target data! It is the DBMS that 
determines whether the derived relation should be materialized en bloc 

prior to the cursor-controlled scan or materialized piecemeal during the 
scan. In either case, it is the system (not the programmer) that selects 
the access paths by which the derived data is to be generated. This 
takes a significant burden off the programmer's shoulders, thereby 
increasing his productivity. 
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6 
Skepticism about 

Relational Systems 
There has been no shortage of skepticism concerning the practicality 

of the relational approach to database management. Much of this skep- 
ticism stems from a lack of understanding, some from fear of the 
numerous theoretical investigations that are based on the relational 
model [1, 2, 15, 16, 24]. Instead of welcoming a theoretical foundation 
as providing soundness, the attitude seems to be: if it's theoretical, 
it cannot be practical. The absence of a theoretical foundation for 
almost all nonrelational DBMS is the prime cause of their ungepotchket 
quality. (This is a Yiddish word, one of whose meanings is patched up.) 

On the other hand, it seems reasonable to pose the following two 
questions: 

(1) Can a relational system provide the range of services that we 
have grown to expect from other DBMS? 

(2) If (1) is answered affirmatively, can such a system perform as 
well as nonrelational DBMS? 3 

We look at each of these in turn. 

sOne should bear in mind that the nonrelational ones always employ comparatively low- 
level data sublanguages for application programming. 
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6.1 
Range of  Services 

A full-scale DBMS provides the following capabilities: 

• data storage, retrieval, and update; 
• a user-accessible catalog for data description; 
• transaction support  to ensure that all or none of a sequence of 

database changes are reflected in the per t inent  database {see [17] for 
an up-to-date summary  of transaction technology}; 

• recovery services in case of failure {system, media, or program}; 
• concur rency  control services to ensure that concurrent  transactions 

behave the same way as if run in some sequential  order; 
• authorization services to ensure that all access to and manipulat ion 

of data be in accordance with specified constraints on users and 
programs [18]; 

• integration with support  for data communicat ion;  
• integrity services to ensure that database states and changes of state 

conform to specified rules. 

Certain relational prototypes developed in the early seventies fell 
far short of providing all these services {possibly for good reasons I. Now, 
however,  several relational systems are available as software 
products  and provide all these services with the exception of the last. 
Present  versions of these products  are admit tedly weak  in the 
provision of integrity services, but  this is rapidly being remedied [10]. 

Some relational DBMS actually provide more complete data services 
than the nonrelat ional  systems. Three  examples follow. 

As a first example, relational DBMS support  the extraction of all 
meaningful  relations from a database, whereas  nonrelat ional  systems 
support  extraction only where  there exist statically predef ined access 
paths. 

As a second example of the additional services provided by some 
relational systems, consider views. A view is a virtual relation {table} 
defined by means of an expression or sequence of commands. Although 
not directly supported by actual data, a view appears to a user as 
if it were an additional base table kept up-to-date and in a state of 
integrity with the other  base tables. Views are useful for permitt ing 
application programs and users at terminals to interact  with constant 
view structures, even when  the base tables themselves are undergoing 
structural changes at the logical level {providing that the pert inent views 
are still definable f rom the new base tables}. They  are also useful in 
restricting the scope of access of programs and users. Nonrelat ional  
systems either do not support  views at all or else support  much  more  
primitive counterparts,  such as the CODASYL subschema. 

As a third example, some systems {e.g., SQL/DS [28] and its proto- 
type predecessor  System R} permit  a variety of changes to be made 
to the logical and physical organization of the data dynamica l ly - -  
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while transactions are in progress. These changes usually require 
application programs to be recoded. Thus, there is less of a program 
maintenance burden, leaving programmers to be more productive 
doing development rather than maintenance. This capability is made 
possible in SQL/DS by the fact that the system has complete control 
over access path selection. 

In nonrelational systems such changes would normally require 
all other database activities including transactions in progress to be 
brought to a halt. The database then remains out of action until the 
organizational changes are completed and any necessary recompiling 
done. 

6.2 
Performance 

Naturally, people would hesitate to use relational systems if these 
systems were sluggish in performance. All too often, erroneous con- 
clusions are drawn about the performance of relational systems by 
comparing the time it might take for one of these systems to execute 
a complex transaction with the time a nonrelational system might take 
to execute an extremely simple transaction. To arrive at a fair per- 
formance comparison, one must compare these systems on the same 
tasks or applications. We shall present arguments to show why relational 
systems should be able to compete successfully with nonrelational 
systems. 

Good performance is determined by two factors: {1} the system 
must support performance-oriented physical data structures; 12) high- 
level language requests for data must be compiled into lower-level code 
sequences at least as good as the average application programmer can 
produce by hand. 

The first step in the argument is that a program written in a Cobol- 
level language can be made to perform efficiently on large databases 
containing production data structured in tabular form with no user- 
visible navigation links between them. This step in the argument is 
supported by the following information [19]: as of August 1981, Tandem 
Computer Corp. had manufactured and installed 760 systems; of these, 
over 700 were making use of the Tandem ENCOMPASS relational 
database management system to support databases containing produc- 
tion data. Tandem has committed its own manufacturing database to 
the care of ENCOMPASS. ENCOMPASS does not support links between 
the database tables, either user-visible {navigation) links or user-invisible 
{access method) links. 

In the second step of the argument, suppose we take the applica- 
tion programs in the above-cited installations and replace the database 
retrieval and manipulation statements by statements in a database 
sublanguage with a relational processing capability le.g., SQL). Clearly, 
to obtain good performance with such a high-level language, it is 
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essential that it be compiled into object code {instead of being inter- 
preted), and it is essential that that object code be efficient. 

Compilation is used in System R and its product version SQL/DS. 
In 1976 Raymond Lorie developed an ingenious pre- and post-compiling 
scheme for coping with dynamic changes in access paths [21]. It also 
copes with early (and hence efficient) authorization and integrity 
checking [the latter, however, is not yet implemented). This scheme 
calls for compiling in a rather special way the SQL statements embedded 
in a host language program. This compilation step transforms the SQL 
statements into appropriate CALLs within the source program together 
with access modules containing object code. These modules are then 
stored in the database for later use at runtime. The code in these access 
modules is generated by the system so as to optimize the sequencing 
of the major operations and the selection of access paths to provide 
runtime efficiency. After this precompilation step, the application 
program is compiled by a regular compiler for the pertinent host 
language. If at any subsequent time one or more of the access paths 
is removed and an attempt is made to run the program, enough source 
information has been retained in the access module to enable the system 
to recompile a new access module that exploits the now existing access 
paths without requiring a recompilation of the application program. 

Incidentally, the same data sublanguage compiler is used on ad hoc 
queries submitted interactively from a terminal and also on queries that 
are dynamically generated during the execution of a program {e.g., from 
parameters submitted interactively I. Immediately after compilation, 
such queries are executed and, with the exception of the simplest of 
queries, the performance is better than that of an interpreter. 

The generation of access modules {whether at the initial compiling 
or recompiling stage I entails a quite sophisticated optimization scheme 
[27], which makes use of system-maintained statistics that would not 
normally be within the programmer's knowledge. Thus, only on the 
simplest of all transactions would it be possible for an average applica- 
tion programmer to compete with this optimizer in generation of 
efficient code. Any attempts to compete are bound to reduce ~the 
programmer's productivity. Thus, the price paid for extra compile-time 
overhead would seem to be well worth paying. 

Assuming nonlinked tabular structures in both cases, we can expect 
SQL/DS to generate code comparable with average hand-written code 
in many simple cases, and superior in many complex cases. Many 
commercial transactions are extremely simple. For example, one may 
need to look up a record for a particular railroad wagon to find out 
where it is or find the balance in someone's savings account. If suitably 
fast access paths are supported le.g., hashing I, there is no reason why 
a high-level language such as SQL, QUEL, or QBE should result in 
less efficient runtime code for these simple transactions than a lower- 
level language, even though such transactions make little use of the 
optimizing capability of the high-level data sublanguage compiler. 
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7 
F u t u r e  D i r e c t i o n s  

If we are to use relational database as a foundation for productivity, 
we need to know what sort of developments may lie ahead for rela- 
tional systems. 

Let us deal with near-term developments first. In some relational 
systems stronger support is needed for domains and primary keys per 
suggestions in [10]. As already noted, all relational systems need 
upgrading with regard to automatic adherence to integrity constraints. 
Existing constraints on updating join-type views need to be relaxed 
Iwhere theoretically possible), and progress is being made on this 
problem [20]. Support for outer joins is needed. 

Marked improvements are being made in optimizing technology, 
so we may reasonably expect further improvements in performance. 
In certain products, such as the ICL CAFS [22] and the Britton-Lee 
IDM500 [13], special hardware support has been implemented. Special 
hardware may help performance in certain types of applications. 
However, in the majority of applications dealing with formatted 
databases, software-implemented relational systems can compete in 
performance with software-implemented nonrelational systems. 

At present, most relational systems do not provide any special 
support for engineering and scientific databases. Such support, including 
interfacing with Fortran, is clearly needed and can be expected. 

Catalogs in relational systems already consist of additional relations 
that can be interrogated just like the rest of the database using the same 
query language. A natural development that can and should be swiftly 
put in place is the expansion of these catalogs into full-fledged active 
dictionaries to provide additional on-line data control. 

Finally, in the near term, we may expect database design aids suited 
for use with relational systems both at the logical and physical levels. 

In the longer term we may expect support for relational databases 
distributed over a communications network [25, 30, 32] and managed 
in such a way that application programs and interactive users can 
manipulate the data {1} as if all of it were stored at the local node-- 
location transparency--and {2)as if no data were replicated 
anywhere --replication transparency. All three of the projects cited above 
are based on the relational model. One important reason for this is 
that relational databases offer great decomposition flexibility when 
planning how a database is to be distributed over a network of computer 
systems, and great recomposition power for dynamic combination of 
decentralized information. By contrast, CODASYL DBTG databases are 
very difficult to decompose and recompose due to the entanglement 
of the owner-member navigation links. This property makes the 
CODASYL approach extremely difficult to adapt to a distributed 
database environment and may well prove to be its downfall. A second 
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reason for use of the relational model is that it offers concise high-level 
data sublanguages for transmitting requests for data from node to node. 

The ongoing work in extending the relational model to capture in 
a formal way more meaning of the data can be expected to lead to the 
incorporation of this meaning in the database catalog in order to factor 
it out of application programs and make these programs even more 
concise and simple. Here, we are, of course, talking about meaning that 
is represented in such a way that the system can understand it and act 
upon it. 

Improved theories are being developed for handling missing data 
and inapplicable data (see for example [3]). This work should yield 
improved treatment of null values. 

As it stands today, relational database is best suited to data with a 
rather regular or homogeneous structure. Can we retain the advantages 
of the relational approach while handling heterogeneous data also? Such 
data may include images, text, and miscellaneous facts. An affirmative 
answer is expected, and some research is in progress on this subject, 
but more is needed. 

Considerable research is needed to achieve a rapprochement 
between database languages and programming languages. Pascal/R [26] 
is a good example of work in this direction. Ongoing investigations focus 
on the incorporation of abstract data types into database languages on 
the one hand [12] and relational processing into programming languages 
on the other. 

8 
Conclus ions  

We have presented a series of arguments to support the claim 
that relational database technology offers dramatic improvements 
in productivity both for end users and for application programmers. 
The arguments center on the data independence, structural simplicity, 
and relational processing defined in the relational model and imple- 
mented in relational database management systems. All three of these 
features simplify the task of developing application programs and the 
formulation of queries and updates to be submitted from a terminal. 
In addition, the first feature tends to keep programs viable in the face 
of organizational and descriptive changes in the database and therefore 
reduces the effort that is normally diverted into the maintenance of 
programs. 

Why, then, does the title of this paper suggest that relational database 
provides only a foundation for improved productivity and not the 
total solution? The reason is simple: relational database deals only 
with the shared data component of application programs and end-user 
interactions. There are numerous complementary technologies that may 
help with other components or aspects, for example, programming 
languages that support relational processing and improved checking 
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of data types, improved editors that unders tand more  of the language 
being used, etc. We use the term "foundation•' because interaction with 
shared data (whether by program or via terminal) represents  the core 
of so much  data processing activity. 

The practicality of the relational approach has been proven by the 
test and product ion installations that are already in operation. Accor- 
dingly, with relational systems we can now look forward to the pro- 
ductivity boost that we all hoped DBMS would provide in the first place. 
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Postscript 

E. E CODD 
Codd and Date Consult ing Group 

San Jose, Calif. 

Two aims of my Turing Award paper were (1) to emphasize that the relational 
model  specifies more than the structural aspects of data as seen by users - -  
it specifies manipulative and integrity aspects too, and (2) to establish a minimal 
collection of features of the relational model which could be used to distinguish 
relational database management  systems (DBMs) from nonrelational systems. 
To be termed "relational" a DBMS would have to support each one of these 
features. 

In the first half of the 1980s most vendors announced DBMS products which 
they claimed to be relational. Many, however, claimed their products to be "fully 
relational," when in fact their products met only the minimal  requirements  
to be termed relational. A few vendors released products which failed to meet 
even the minimal requirements, but loudly claimed them to be "fully relational" 
in their manuals, in their advertisements,  and in their  presentations and press 
releases. 

To protect users who might be expecting to reap all the benefits associated 
with the relational approach, I decided in the fall of 1985 to publish the two- 
part article "How Relational is Your Database Management  System?" in 
Computerworld (October 14 and 21). In Part 1 of this paper  I described 12 rules, 
each of which had to be fully supported by a DBMS product,  if that product  
had a chance of being truthfully claimed to be fully relational. In Part II, I rated 
three widely advertised DBMS products intended pr imari ly  for large main- 
frames. Two of these three products each received a score of zero on their 
support  for the 12 rules. 

I believe that these papers  have had the very salutary effect of reducing 
the frequency of flamboyant claims from vendors in the area of relational 
databases. 
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