
1 9 8 1
T u r i n g
A w a r d
Lecture

Relational Database:
A Practical Foundation

for Productivity
E. E CODD

IBM San Jose Research Laboratory

The 1981 ACM Turing Award was presented to Edgar E Codd, an IBM
Fellow of the San Jose Research Laboratory, by President Peter Denning
on November 9, 1981, at the ACM Annual Conference in Los Angeles,
California. It is the Association's foremost award for technical contributions
to the computing community.

Codd was selected by the ACM General Technical Achievement Award
Committee for his "~undamental and continuing contributions to the theory
and practice of database management systems." The originator of the
relational model for databases, Codd has made further important contribu-
tions in the development of relational algebra, relational calculus, and
normalization of relations.

Edgar E Coddjoined IBM in 1949 to prepare programs for the Selective
Sequence Electronic Calculator. Since then, his work in computing has
encompassed logical design of computers [IBM 701 and Stretch], managing
a computer center in Canada, heading the development of one of the
first operating systems with a general multiprogramming capability, con-

Author's present address: Codd & Date Consulting Group, RO. Box 20038, San Jose, CA
95160.

391

tributing to the logic of self-reproducing automata, developing high level
techniques for software specilication, creating and extending the relational
approach to database management, and developing an English analyzing
and synthesizing subsystem for casual users of relational databases. He is
also the author of Cellular Automata , an early volume in the ACM
Monograph Series.

Codd received his B.A. and M.A. in Mathematics from Oxford Univer-
sity in England, and his M.Sc. and Ph.D. in Computer and Communication
Sciences from the University of Michigan. He is a Member of the
National Academy of Engineering [USA] and a Fellow of the British Com-
puter Society.

The ACM Taring Award is presented each year in commemoration of
A. M. Taring, the English mathematician who made major contributions
to the computing sciences.

It is well known that the growth in demands from end users for new applications
is outstripping the capability of data processing departments to implement the
corresponding application programs. There are two complementary approaches
to attacking this problem land both approaches are needed): one is to put end users
into direct touch with the information stored in computers; the other is to increase
the productivity of data processing professionals in the development of applica-
tion programs. It is less well known that a single technology, relational database
management, provides a practical foundation for both approaches. It is explained
why this is so.

While developing this productivity theme, it is noted that the time has come
to draw a very sharp line between relational and nonrelational database systems,
so that the label "relational" will not be used in misleading ways. The key to
drawing this line is something called a "relational processing capability."

1
I n t r o d u c t i o n

It is genera l ly admi t t ed that there is a p roduc t iv i ty crisis in the
d e v e l o p m e n t of " r u n n i n g code" for c o m m e r c i a l and indust r ia l ap-
plications. The g r o w t h in end user d e m a n d s for n e w appl ica t ions
is ou ts t r ipp ing the capabi l i ty of data p rocess ing d e p a r t m e n t s to imple-
m e n t the c o r r e s p o n d i n g appl ica t ion p rograms . In the late sixties and
ear ly sevent ies m a n y people in the c o m p u t i n g field h o p e d that the
in t roduc t ion of da tabase m a n a g e m e n t sys t ems {commonly abbrev ia ted
DBMS} w o u l d m a r k e d l y increase the p roduc t iv i ty of appl ica t ion pro-
g r a m m e r s by r e m o v i n g m a n y of their p r o b l e m s in hand l ing input and
ou tpu t files. DBMS {along wi th data dict ionaries) appea r to have b e e n
h ighly successfu l as i n s t rum e n t s of data control , arkd they did r e m o v e
m a n y of the file hand l ing details f r o m the c o n c e r n of appl ica t ion
p rog ramme rs . W h y then have they failed as p roduc t iv i ty boosters?

There are three pr inc ipa l reasons:

(1) These sys tems b u r d e n e d appl icat ion p r o g r a m m e r s wi th n u m e r -
ous concep t s tha t were i r re levant to their da ta retr ieval and man ipu la -
t ion tasks, forc ing t h e m to th ink and code at a need less ly low level

392 E. F. CODD

of structural detail (the "owner-member set" of CODASYL DBTG is an
outstanding example ~);

(2) No commands were provided for processing multiple records
at a t ime-- in other words, DBMS did not support set processing and,
as a result, programmers were forced to think and code in terms of
iterative loops that were often unnecessary (here we use the word "set"
in its traditional mathematical sense, not the linked structure sense of
CODASYL DBTG};

{3} The needs of end users for direct interaction with databases, par-
ticularly interaction of an unanticipated nature, were inadequately
recognized--a query capability was assumed to be something one could
add on to a DBMS at some later time.

Looking back at the database management systems of the late sixties,
we may readily observe that there was no sharp distinction between
the programmer's (logical} view of the data and the (physical} representa-
tion of data in storage. Even though what was called the logical level
usually provided protection from placement expressed in terms of
storage addresses and byte offsets, many storage-oriented concepts were
an integral part of this level. The adverse impact on development
productivity of requiring programmers to navigate along access paths
to reach the target data (in some cases having to deal directly with the
layout of data in storage and in others having to follow pointer chains}
was enormous. In addition, it was not possible to make slight changes
in the layout in storage without simultaneously having to revise all
programs that relied on the previous structure. The introduction of an
index might have a similar effect. As a result, far too much manpower
was being invested in continual (and avoidable) maintenance of applica-
tion programs.

Another consequence was that installation of these systems was
often agonizingly slow, due to the large amount of time spent in
learning about the systems and in planning the organization of the
data at both logical and physical levels, prior to database activation.
The aim of this preplanning was to "get it right once and for all"
so as to avoid the need for subsequent changes in the data description
that, in turn, would force coding changes in application programs.
Such an objective was, of course, a mirage, even if sound principles
for database design had been known at the time (and, of course, they
were not}.

To show how relational database management systems avoid the
three pitfalls cited above, we shall first review the motivation of the
relational model and discuss some of its features. We shall then classify

1The crux of the p rob lem wi th the CODASYL DBTG o w n e r - m e m b e r set is that it
combines into one construct three orthogonal concepts: one- to-many relationship,
existence dependency, and a user-visible l inked s t ruc ture to be t raversed by application
programs. It is that last of these three concepts that places a heavy and unnecessa ry
navigation burden on application programmers. It also presents an insurmountable obstacle
for end users.

I ~) 8 1

'1 t , r i n g

[c i ' h l l ' t "

Relational Database: A Practical Foundat ion for Productivi ty 393

systems that are based upon that model. As we proceed, we shall stress
application programmer productivity, even though the benefits for end
users are just as great, because much has already been said
and demonstrated regarding the value of relational database to end
users Isee [23] and the papers cited therein).

2
M o t i v a t i o n

The most important motivation for the research work that resulted
in the relational model was the objective of providing a sharp and clear
boundary between the logical and physical aspects of database manage-
ment lincluding database design, data retrieval, and data manipulation I.
We call this the data independence objective.

A second objective was to make the model structurally simple, so
that all kinds of users and programmers could have a common
understanding of the data, and could therefore communicate with one
another about the database. We call this the communicability objective.

A third objective was to introduce high-level language concepts Ibut
not specific syntax I to enable users to express operations upon large
chunks of information at a time. This entailed providingaJfoundation
for set-oriented processing li.e., the ability to express in a single state-
ment the processing of multiple sets of records at a timel. We call this
the set-processing objective.

There were other objectives, such as providing a sound theoretical
foundation for database organization and management, but these
objectives are less relevant to our present productivity theme.

3
T h e R e l a t i o n a l M o d e l

To satisfy these three objectives, it was necessary to discard all those
data structuring concepts le.g., repeating groups, linked structuresl
that were not familiar to end users and to take a fresh look at the
addressing of data.

Positional concepts have always played a significant role in com-
puter addressing, beginning with plugboard addressing, then absolute
numeric addressing, relative numeric addressing, and symbolic address-
ing with arithmetic properties le.g., the symbolic address A + 3 in
assembler languagel the address X(I + 1, J - 2) of an element in a
Fortran, Algol, or PL/I array named X I. In the relational model we
replace positional addressing by totally associative addressing. Every
datum in a relational database can be uniquely addressed by means
of the relation name, primary key value, and attribute name. Associative
addressing of this form enables users (yes, and even programmers also!)
to leave it to the system to (1} determine the details of placement of
a new piece of information that is being inserted into a database and
(2} select appropriate access paths when retrieving data.

394 E. F. CODD

All information in a relational database is represented by values in
tables (even table names appear as character strings in at least one table).
Addressing data by value, rather than by position, boosts the producti-
vity of programmers as well as end users (positions of items in se-
quences are usually subject to change and are not easy for a person to
keep track of, especially if the sequences contain many items). More-
over, the fact that programmers and end users all address data in the
same way goes a long way to meeting the communicabi l i ty objective.

The n-ary relation was chosen as the single aggregate structure for
the relational model, because with appropriate operators and an ap-
propriate conceptual representat ion (the table) it satisfies all three of
the cited objectives. Note that an n-ary relation is a mathematical set,
in which the ordering of rows is immaterial.

Sometimes the following questions arise: Why call it the relational
model? Why not call it the tabular model? There are two reasons: (1)
At the time the relational model was introduced, many people in data
processing felt that a relation (or relationship) among two or more ob-
jects must be represented by a linked data structure (so the name was
selected to counter this misconception); (2) tables are at a lower level
of abstraction than relations, since they give the impression that posi-
tional (array-type) addressing is applicable (which is not true of n-ary
relations), and they fail to show that the information content of a table
is independent of row order. Nevertheless, even with these minor flaws,
tables are the most important conceptual representat ion of relations,
because they are universally understood.

Incidentally, if a data model is to be considered as a serious alter-
native for the relational model, it too should have a clearly defined con-
ceptual representat ion for database instances. Such a representat ion
facilit.ates thinking about the effects of whatever operations are under
consideration. It is a requi rement for p rogrammer and end-user pro-
ductivity. Such a representat ion is rarely, if ever, discussed in data
models that use concepts such as entities and relationships, or in func-
tional data models. Such models f requent ly do not have any operators
either! Nevertheless, they may be useful for certain kinds of data type
analysis encountered in the process of establishing a new database,
especially in the very early stages of determining a prel iminary infor-
mal organization. This leads to the question: What is the data model?

A data model is, of course, not just a data structure, as many people
seem to think. It is natural that the principal data models are named
after their principal structures, but that is not the whole story.

A data model [9] is a combinat ion of at least three components:

{ i) A collection of data structure types (the database building
blocks);

(2) A collection of operators or rules of inference, which can be
applied to any valid instances of the data types listed in (1), to retrieve,
derive, or modify data f rom any parts of those structures in any
combinations desired;

I ~) ~ 1

*1 , , r i , l g

l , t ' (' l l l r ¢ *

Relational Database: A Practical Foundation for Productivity 395

{3) A collection of general integrity rules, which implicitly or
explicitly define the set of consistent database states or changes of
state or both--these rules are general in the sense that they apply to
any database using this model {incidentally, they may sometimes be
expressed as insert-update-delete rules).

The relational model is a data model in this sense, and was the first
such to be defined. We do not propose to give a detailed definition of
the relational model here --the original definition appeared in [7], and
an improved one in Secs. 2 and 3 of [8]. Its structural part consists of
domains, relations of assorted degrees {with tables as their principal
conceptual representation), attributes, tuples, candidate keys, and
primary keys. Under the principal representation, attributes become
columns of tables and tuples become rows, but there is no notion of
one column succeeding another or of one row succeeding another as
far as the database tables are concerned. In other words, the left to right
order of columns and the top to bottom order of rows in those tables
are arbitrary and irrelevant.

The manipulative part of the relational model consists of the algebraic
operators (select, project, join, etc.) which transform relations into
relations {and hence tables into tables).

The integrity part consists of two integrity rules: entity integrity
and referential integrity (see [8, 11] for recent developments in this
latter area). In any particular application of a data model it may be
necessary to impose further (database-specific) integrity constraints, and
thereby define a smaller set of consistent database states or changes
of state.

In the development of the relational model, there has always been
a strong coupling between the structural, manipulative, and integrity
aspects. If the structures are defined alone and separately, their
behavioral properties are not pinned down, infinitely many possibilities
present themselves, and endless speculation results. It is therefore no
surprise that attempts such as those of CODASYL and ANSI to develop
data structure definition language {DDL) and data manipulation
language {DML) in separate committees have yielded many
misunderstandings and incompatibilities.

4
The Relational

Processing Capability
The relational model calls not only for relational structures Iwhich

can be thought of as tables), but also for a particular kind of set pro-
cessing called relational processing. Relational processing entails treating
whole relations as operands. Its primary purpose is loop-avoidance, an
absolute requirement for end users to be productive at all, and a clear
productivity booster for application programmers.

396 E. F. CODD

The SELECT operator {also called RESTRICT} of the relational
algebra takes one relation {table} as operand and produces a new relation
{table} consisting of selected tuples {rowsl of the first. The PROJECT
operator also transforms one relation [table) into a new one, this time,
however, consisting of selected attributes [columns) of the first. The
EQUI-JOIN operator takes two relations {tables} as operands and
produces a third consisting of rows of the first concatenated with rows
of the second, but only where specified columns in the first and
specified columns in the second have matching values. If redundancy
in columns is removed, the operator is called NATURAL JOIN. In what
follows, we use the term "join" to refer to either the equi-join or the
natural join.

The relational algebra, which includes these and other operators,
is intended as a yardstick of power. It is not intended to be standard
language, to which all relational systems should adhere. The set-
processing objective of the relational model is intended to be met by
means of a data sublanguage z having at least the power of the relational
algebra without making use of iteration or recursion statements.

Much of the derivability power of the relational algebra is obtained
from the SELECT, PROJECT, and JOIN operators alone, provided the
JOIN is not subject to any implementation restrictions having to do with
predefinition of supporting physical access paths. A system has an
unrestricted join capability if it allows joins to be taken wherein any pair
of attributes may be matched, providing only that they are defined
on the same domain or data type {for our present purpose, it does
not matter whether the domain is syntactic or semantic and it does not
matter whether the data type is weak or strong, but see [10] for cir-
cumstances in which it does matter}.

Occasionally, one finds systems in which join is supported only if
the attributes to be matched have the same name or are supported by
a certain type of predeclared access path. Such restrictions significant-
ly impair the power of the system to derive relations from the base rela-
tions. These restrictions consequently reduce the system's capability
to handle unanticipated queries by end users and reduce the chances
for application programmers to avoid coding iterative loops.

Thus, we say that a data sublanguage L has a relational processing
capability if the transformations specified by the SELECT, PROJECT,
and unrestricted JOIN operators of the relational algebra can be
specified in L without resorting to commands for iteration or recursion.
For a database management system to be called relational it must
support:

{1} Tables without user-visible navigation links between them;
{21 A data sublanguage with at least this {minimal I relational pro-

cessing capability.

ZA data sublanguage is a specialized language for database management, supporting at
least data definition, data retrieval, insertion, update, and deletion. It need not be com-
putationally complete; and usually is not. In the context of application programming,
it is intended to be used in conjunction with one or more programming languages.

I ~.~8 I

' l u r i n g

A ~,~'il i ' (i

I~t'~'llart"

Relational Database: A Practical Foundation for Productivity 397

One consequence of this is that a DBMS that does not support rela-
tional processing should be considered nonrelational. Such a system
might be more appropriately called tabular, providing that it supports
tables without user-visible navigation links between tables. This term
should replace the term "semi-relational" used in [8], because there
is a large difference in implementation complexity between tabular
systems, in which the programmer does his own navigation, and
relational systems, in which the system does the navigation for him,
i.e., the system provides automatic navigation.

The definition of relational DBMS given above intentionally permits
a lot of latitude in the services provided. For example, it is not required
that the full relational algebra be supported, and there is no requirement
in regard to support of the two integrity rules of the relational model
[entity integrity and referential integrity). Full support by a relational
system of these latter two parts of the model justifies calling that system
fully relational [8]. Although we know of no systems that qualify as
fully relational today, some are quite close to qualifying, and no doubt
will soon do so.

In Fig. 1 we illustrate the distinction between the various kinds
of relational and tabular systems. For each class the extent of shading
in the S box is intended to show the degree of fidelity of members
of that class to the structural requirements of the relational model.

M

(previously called

: I,
M

~ M

"~ Relationally
.~ Complete

M °& Fully rn-~
Relational

S !

FIGURE 1. Classification of DBMS: S, structural;
M, manipulative; [, inteErity; c, relational completeness;
m, minimal relational processing capability.

A similar remark applies to the M box with respect to the manipu-
lative requirements, and to the I box with respect to the integrity
requirements.

398 E. F. CODD

r n denotes the minimal relational processing capability, c denotes
relational completeness (a capability corresponding to a two-valued first-
order predicate logic without nulls}. When the manipulation box M
is fully shaded, this denotes a capability corresponding to the full rela-
tional completeness {a capability corresponding to a two-valued
first-order predicate logic without nulls}. When the manipulation box
M is fully shaded, this denotes a capability corresponding to the full
relational algebra defined in [8] (a three-valued predicate logic with a
single kind of null}. The question mark in the integrity box for each
class except the fully relational is an indication of the present inade-
quate support for integrity in relational systems. Stronger support for
domains and primary keys is needed [10], as well as the kind of facility
discussed in [14].

Note that a relational DBMS may package its relational processing
capability in any convenient way. For example, in the INGRES system
of Relational Technology, Inc., the RETRIEVE statement of QUEL [29]
embodies all three operators {select, project, join} in one statement, in
such a way that one can obtain the same effect as any one of the
operators or any combination of them.

In the definition of the relational model there are several prohibi-
tions. To cite two examples: user-visible navigation links between tables
are ruled out, and database information must not be represented (or
hidden} in the ordering of tuples within base relations. Our experience
is that DBMS designers who have implemented nonrelational systems
do not readily understand and accept these prohibitions. By contrast,
users enthusiastically understand and accept the enhanced ease of
learning and ease of use resulting from these prohibitions.

Incidentally, the Relational Task Group of the American National
Standards Institute has recently issued a report [4] on the feasibility
of developing a standard for relational database systems. This report
contains an enlightening analysis of the features of a dozen relational
systems, and its authors clearly understand the relational model.

I t) 8 I
' l u r i n g
A w a r d
t e t ' l l l l ' t ~

5
The Uniform

Relational Property
In order to have wide applicability most relational DBMS have a

data sublanguage which can be interfaced with one or more of the
commonly used programming languages {e.g., Cobol, Fortran, PL/I,
APL). We shall refer to these latter languages as host languages. A
relational DBMS usually supports at least one end-user oriented data
sublanguage -- sometimes several, because the needs of these users may
vary. Some prefer string languages such as QUEL or SQL [5], while
others prefer the screen-oriented two-dimensional data sublanguage of
Query-by-Example [33].

R e l a t i o n a l D a t a b a s e : A P r a c t i c a l F o u n d a t i o n fo r P r o d u c t i v i t y 399

Now, some relational systems (e.g., System R [6], INGRES [29]) sup-
port a data sublanguage that is usable in two modes: (l) interactively
at a terminal and (2) embedded in an application program written in
a host language. There are strong arguments for such a double-mode data
sublanguage:

{1) With such a language application programmers can separately
debug at a terminal the database statements they wish to incorporate
in their application p rograms- people who have used SQL to develop
application programs claim that the double-mode feature significantly
enhances their productivity;

{2) Such a language significantly enhances communication among
programmers, analysts, end users, database administration staff, etc.;

(3) Frivolous distinctions between the languages used in these two
modes place an unnecessary learning and memory burden on those
users who have to work in both modes.

The importance of this feature in productivity suggests that relational
DBMS be classified according to whether they possess this feature or
not. Accordingly, we call those relational DBMS that support a double-
mode sublanguage uniform relational. Thus, a uniform relational DBMS
supports relational processing at both an end-user interface and at an
application programming interface using a data sublanguage common to
both interfaces.

The natural term for all other relational DBMS is nonuniform rela-
tional. An example of a nonuniform relational DBMS is the TANDEM
ENCOMPASS [19]. With this system, when retrieving data interactively
at a terminal, one uses the relational data sublanguage ENFORM {a
language with relational processing capability). When writing a program
to retrieve or manipulate data, one uses an extended version of Cobol
(a language that does not possess the relational processing capability).
Common to both levels of use are the structures: tables without user-
visible navigation links between them.

A question that immediately arises is this: how can a data
sublanguage with relational processing capability be interfaced with
a language such as Cobol or PL/I that can handle data one record at
a time only {i.e., that is incapable of treating a set of records as a
single operand)? To solve this problem we must separate the following
two actions from one another: {1) definition of the relation to be
derived; {2) presentation of the derived relation to the host language
program.

One solution (adopted in the Peterlee Relational Test Vehicle [31])
is to cast a derived relation in the form of a file that can be read
record-by-record by means of host language statements. In this case
delivery of records is delegated to the file system used by the pertinent
host language.

Another solution (adopted by System R) is to keep the delivery of
records under the control of data sublanguage statements and, hence,

400 E.F. CODD

under the control of the relational DBMS optimizer. A query statement
Q of SQL (the data sublanguage of System R} may be embedded in a
host language program, using the following kind of phrase (for ex-
pository reasons, the syntax is not exactly that of SQL):

DECLARE C CURSOR FOR Q

where C stands for any name chosen by the programmer. Such a state-
ment associates a cursor named C with the defining expression Q. Tuples
from the derived relation defined by Q are presented to the program
one at a time by means of the named cursor. Each time a FETCH per
this cursor is executed, the system delivers another tuple from the deriv-
ed relation. The order of delivery is system-determined unless the SQL
statement Q defining the derived relation contains an ORDER BY
clause.

It is important to note that in advancing a cursor over a derived
relation the programmer is not engaging in navigation to some target
data. The derived relation is itself the target data! It is the DBMS that
determines whether the derived relation should be materialized en bloc

prior to the cursor-controlled scan or materialized piecemeal during the
scan. In either case, it is the system (not the programmer) that selects
the access paths by which the derived data is to be generated. This
takes a significant burden off the programmer's shoulders, thereby
increasing his productivity.

1 9 8 1

'1 u r i l l g
Awalrl l

I , e f lu re

6
Skepticism about

Relational Systems
There has been no shortage of skepticism concerning the practicality

of the relational approach to database management. Much of this skep-
ticism stems from a lack of understanding, some from fear of the
numerous theoretical investigations that are based on the relational
model [1, 2, 15, 16, 24]. Instead of welcoming a theoretical foundation
as providing soundness, the attitude seems to be: if it's theoretical,
it cannot be practical. The absence of a theoretical foundation for
almost all nonrelational DBMS is the prime cause of their ungepotchket
quality. (This is a Yiddish word, one of whose meanings is patched up.)

On the other hand, it seems reasonable to pose the following two
questions:

(1) Can a relational system provide the range of services that we
have grown to expect from other DBMS?

(2) If (1) is answered affirmatively, can such a system perform as
well as nonrelational DBMS? 3

We look at each of these in turn.

sOne should bear in mind that the nonrelational ones always employ comparatively low-
level data sublanguages for application programming.

Relational Database: A Practical Foundation for Productivity 401

6.1
Range of Services

A full-scale DBMS provides the following capabilities:

• data storage, retrieval, and update;
• a user-accessible catalog for data description;
• transaction support to ensure that all or none of a sequence of

database changes are reflected in the per t inent database {see [17] for
an up-to-date summary of transaction technology};

• recovery services in case of failure {system, media, or program};
• concur rency control services to ensure that concurrent transactions

behave the same way as if run in some sequential order;
• authorization services to ensure that all access to and manipulat ion

of data be in accordance with specified constraints on users and
programs [18];

• integration with support for data communicat ion;
• integrity services to ensure that database states and changes of state

conform to specified rules.

Certain relational prototypes developed in the early seventies fell
far short of providing all these services {possibly for good reasons I. Now,
however, several relational systems are available as software
products and provide all these services with the exception of the last.
Present versions of these products are admit tedly weak in the
provision of integrity services, but this is rapidly being remedied [10].

Some relational DBMS actually provide more complete data services
than the nonrelat ional systems. Three examples follow.

As a first example, relational DBMS support the extraction of all
meaningful relations from a database, whereas nonrelat ional systems
support extraction only where there exist statically predef ined access
paths.

As a second example of the additional services provided by some
relational systems, consider views. A view is a virtual relation {table}
defined by means of an expression or sequence of commands. Although
not directly supported by actual data, a view appears to a user as
if it were an additional base table kept up-to-date and in a state of
integrity with the other base tables. Views are useful for permitt ing
application programs and users at terminals to interact with constant
view structures, even when the base tables themselves are undergoing
structural changes at the logical level {providing that the pert inent views
are still definable f rom the new base tables}. They are also useful in
restricting the scope of access of programs and users. Nonrelat ional
systems either do not support views at all or else support much more
primitive counterparts, such as the CODASYL subschema.

As a third example, some systems {e.g., SQL/DS [28] and its proto-
type predecessor System R} permit a variety of changes to be made
to the logical and physical organization of the data dynamica l ly - -

402 E .F . CODD

while transactions are in progress. These changes usually require
application programs to be recoded. Thus, there is less of a program
maintenance burden, leaving programmers to be more productive
doing development rather than maintenance. This capability is made
possible in SQL/DS by the fact that the system has complete control
over access path selection.

In nonrelational systems such changes would normally require
all other database activities including transactions in progress to be
brought to a halt. The database then remains out of action until the
organizational changes are completed and any necessary recompiling
done.

6.2
Performance

Naturally, people would hesitate to use relational systems if these
systems were sluggish in performance. All too often, erroneous con-
clusions are drawn about the performance of relational systems by
comparing the time it might take for one of these systems to execute
a complex transaction with the time a nonrelational system might take
to execute an extremely simple transaction. To arrive at a fair per-
formance comparison, one must compare these systems on the same
tasks or applications. We shall present arguments to show why relational
systems should be able to compete successfully with nonrelational
systems.

Good performance is determined by two factors: {1} the system
must support performance-oriented physical data structures; 12) high-
level language requests for data must be compiled into lower-level code
sequences at least as good as the average application programmer can
produce by hand.

The first step in the argument is that a program written in a Cobol-
level language can be made to perform efficiently on large databases
containing production data structured in tabular form with no user-
visible navigation links between them. This step in the argument is
supported by the following information [19]: as of August 1981, Tandem
Computer Corp. had manufactured and installed 760 systems; of these,
over 700 were making use of the Tandem ENCOMPASS relational
database management system to support databases containing produc-
tion data. Tandem has committed its own manufacturing database to
the care of ENCOMPASS. ENCOMPASS does not support links between
the database tables, either user-visible {navigation) links or user-invisible
{access method) links.

In the second step of the argument, suppose we take the applica-
tion programs in the above-cited installations and replace the database
retrieval and manipulation statements by statements in a database
sublanguage with a relational processing capability le.g., SQL). Clearly,
to obtain good performance with such a high-level language, it is

Relational Database: A Practical Foundation for Productivity 403

essential that it be compiled into object code {instead of being inter-
preted), and it is essential that that object code be efficient.

Compilation is used in System R and its product version SQL/DS.
In 1976 Raymond Lorie developed an ingenious pre- and post-compiling
scheme for coping with dynamic changes in access paths [21]. It also
copes with early (and hence efficient) authorization and integrity
checking [the latter, however, is not yet implemented). This scheme
calls for compiling in a rather special way the SQL statements embedded
in a host language program. This compilation step transforms the SQL
statements into appropriate CALLs within the source program together
with access modules containing object code. These modules are then
stored in the database for later use at runtime. The code in these access
modules is generated by the system so as to optimize the sequencing
of the major operations and the selection of access paths to provide
runtime efficiency. After this precompilation step, the application
program is compiled by a regular compiler for the pertinent host
language. If at any subsequent time one or more of the access paths
is removed and an attempt is made to run the program, enough source
information has been retained in the access module to enable the system
to recompile a new access module that exploits the now existing access
paths without requiring a recompilation of the application program.

Incidentally, the same data sublanguage compiler is used on ad hoc
queries submitted interactively from a terminal and also on queries that
are dynamically generated during the execution of a program {e.g., from
parameters submitted interactively I. Immediately after compilation,
such queries are executed and, with the exception of the simplest of
queries, the performance is better than that of an interpreter.

The generation of access modules {whether at the initial compiling
or recompiling stage I entails a quite sophisticated optimization scheme
[27], which makes use of system-maintained statistics that would not
normally be within the programmer's knowledge. Thus, only on the
simplest of all transactions would it be possible for an average applica-
tion programmer to compete with this optimizer in generation of
efficient code. Any attempts to compete are bound to reduce ~the
programmer's productivity. Thus, the price paid for extra compile-time
overhead would seem to be well worth paying.

Assuming nonlinked tabular structures in both cases, we can expect
SQL/DS to generate code comparable with average hand-written code
in many simple cases, and superior in many complex cases. Many
commercial transactions are extremely simple. For example, one may
need to look up a record for a particular railroad wagon to find out
where it is or find the balance in someone's savings account. If suitably
fast access paths are supported le.g., hashing I, there is no reason why
a high-level language such as SQL, QUEL, or QBE should result in
less efficient runtime code for these simple transactions than a lower-
level language, even though such transactions make little use of the
optimizing capability of the high-level data sublanguage compiler.

404 E. F. CODD

7
F u t u r e D i r e c t i o n s

If we are to use relational database as a foundation for productivity,
we need to know what sort of developments may lie ahead for rela-
tional systems.

Let us deal with near-term developments first. In some relational
systems stronger support is needed for domains and primary keys per
suggestions in [10]. As already noted, all relational systems need
upgrading with regard to automatic adherence to integrity constraints.
Existing constraints on updating join-type views need to be relaxed
Iwhere theoretically possible), and progress is being made on this
problem [20]. Support for outer joins is needed.

Marked improvements are being made in optimizing technology,
so we may reasonably expect further improvements in performance.
In certain products, such as the ICL CAFS [22] and the Britton-Lee
IDM500 [13], special hardware support has been implemented. Special
hardware may help performance in certain types of applications.
However, in the majority of applications dealing with formatted
databases, software-implemented relational systems can compete in
performance with software-implemented nonrelational systems.

At present, most relational systems do not provide any special
support for engineering and scientific databases. Such support, including
interfacing with Fortran, is clearly needed and can be expected.

Catalogs in relational systems already consist of additional relations
that can be interrogated just like the rest of the database using the same
query language. A natural development that can and should be swiftly
put in place is the expansion of these catalogs into full-fledged active
dictionaries to provide additional on-line data control.

Finally, in the near term, we may expect database design aids suited
for use with relational systems both at the logical and physical levels.

In the longer term we may expect support for relational databases
distributed over a communications network [25, 30, 32] and managed
in such a way that application programs and interactive users can
manipulate the data {1} as if all of it were stored at the local node--
location transparency--and {2)as if no data were replicated
anywhere --replication transparency. All three of the projects cited above
are based on the relational model. One important reason for this is
that relational databases offer great decomposition flexibility when
planning how a database is to be distributed over a network of computer
systems, and great recomposition power for dynamic combination of
decentralized information. By contrast, CODASYL DBTG databases are
very difficult to decompose and recompose due to the entanglement
of the owner-member navigation links. This property makes the
CODASYL approach extremely difficult to adapt to a distributed
database environment and may well prove to be its downfall. A second

Relational Database: A Practical Foundation for Productivity 405

reason for use of the relational model is that it offers concise high-level
data sublanguages for transmitting requests for data from node to node.

The ongoing work in extending the relational model to capture in
a formal way more meaning of the data can be expected to lead to the
incorporation of this meaning in the database catalog in order to factor
it out of application programs and make these programs even more
concise and simple. Here, we are, of course, talking about meaning that
is represented in such a way that the system can understand it and act
upon it.

Improved theories are being developed for handling missing data
and inapplicable data (see for example [3]). This work should yield
improved treatment of null values.

As it stands today, relational database is best suited to data with a
rather regular or homogeneous structure. Can we retain the advantages
of the relational approach while handling heterogeneous data also? Such
data may include images, text, and miscellaneous facts. An affirmative
answer is expected, and some research is in progress on this subject,
but more is needed.

Considerable research is needed to achieve a rapprochement
between database languages and programming languages. Pascal/R [26]
is a good example of work in this direction. Ongoing investigations focus
on the incorporation of abstract data types into database languages on
the one hand [12] and relational processing into programming languages
on the other.

8
Conclus ions

We have presented a series of arguments to support the claim
that relational database technology offers dramatic improvements
in productivity both for end users and for application programmers.
The arguments center on the data independence, structural simplicity,
and relational processing defined in the relational model and imple-
mented in relational database management systems. All three of these
features simplify the task of developing application programs and the
formulation of queries and updates to be submitted from a terminal.
In addition, the first feature tends to keep programs viable in the face
of organizational and descriptive changes in the database and therefore
reduces the effort that is normally diverted into the maintenance of
programs.

Why, then, does the title of this paper suggest that relational database
provides only a foundation for improved productivity and not the
total solution? The reason is simple: relational database deals only
with the shared data component of application programs and end-user
interactions. There are numerous complementary technologies that may
help with other components or aspects, for example, programming
languages that support relational processing and improved checking

406 E.F. CODD

of data types, improved editors that unders tand more of the language
being used, etc. We use the term "foundation•' because interaction with
shared data (whether by program or via terminal) represents the core
of so much data processing activity.

The practicality of the relational approach has been proven by the
test and product ion installations that are already in operation. Accor-
dingly, with relational systems we can now look forward to the pro-
ductivity boost that we all hoped DBMS would provide in the first place.

Acknowledgments
I would like to express my indebtedness to the System R develop-

ment team at IBM Research, San Jose, for developing a full-scale,
uniform relational prototype that entailed numerous language and
system innovations; to the development team at the IBM Laboratory,
Endicott, N.Y., for the professional way in which they converted System
R into product form; to the various teams at universities, hardware
manufacturers, software firms, and user installations, who designed and
implemented working relational systems; to the QBE team at IBM
Yorktown Heights, N.Y.; to the PRTV team at the IBM Scientific Centre
in England; and to the numerous contributors to database theory
who have used the relational model as a cornerstone. A special
acknowledgment is due to the very few colleagues who saw something
worth supporting in the early stages, particularly, Chris Date and Sharon
Weinberg. Finally, it was Sharon Weinberg who suggested the theme
of this paper.

References
1. Berri, C., Bernstein, P., and Goodman, N. A sophisticate's introduction

to database normalization theory. Proc. Very Large Data Bases, West
Berlin, Germany, Sept. 1978.

2. Bernstein, P. A., Goodman, N., Lai, Moy. Laying phantoms to rest. Report
TR-03-81, Center for Research in Computing Technology, Harvard
University, Cambridge, Mass., 1981.

3. Biskup, J. A. A formal approach to null values in database relations.
Proc. Workshop on Formal Bases for Data Bases, Toulouse, France, Dec.
1979; published in [16] (see below), pp. 299-342.

4. Brodie, M., and Schmidt, J. (Eds.) Report of the ANSI Relational Task
Group. (to be published ACM SIGMOD Record}.

5. Chamberlin, D. D., et al. SEQUEL2: A unified approach to data defini-
tion, manipulation, and control. IBMJ. Res. & Dev. 20, 6 (Nov. 1976),
560-565.

6. Chamberlin, D. D., et al. A history and evaluation of system R. Comm.
ACM 24, 10 (Oct. 1981), 632-646.

7. Codd, E. F. A relational model of data for large shared data banks. Comm.
ACM 13, 6 (June 1970), 377-387.

Relational Database: A Practical Foundation for Productivity 407

8. Codd, E. E Extending the database relational model to capture more
meaning. ACM TODS 4, 4 [Dec. 1979), 397-434.

9. Codd, E. E Data models in database management. ACM SIGMOD Record
11, 2 {Feb. 1981), 112-114.

10. Codd, E. E The capabilities of relational database management systems.
Proc. Convencio Informatica Llatina, Barcelona, Spain, June 9-12, 1981,
pp. 13-26; also available as Report 3132, IBM Research Lab., San Jose,
Calif.

11. Date, C. J. Referential integrity. Proc. Very Large Data Bases, Cannes,
France, Sept. 9-11, 1981, pp. 2-12.

12. Ehrig, H., and Weber, H. Algebraic specification schemes for data base
systems. Proc. Very Large Data Bases, West Berlin, Germany, Sept. 13-15,
1978, pp. 427-440.

13. Epstein, R., and Hawthorne, E Design decisions for the intelligent
database machine. Proc. NNC 1980, AFIPS, Vol. 49, May 1980, pp.
237-241.

14. Eswaran, K. E, and Chamberlin, D. D. Functional specifications of a
subsystem for database integrity. Proc. Very Large Data Bases, Framing-
ham, Mass., Sept. 1975, pp. 48-68.

15. Fagin, R. Horn clauses and database dependencies. Proc. 1980 ACM
SIGACT Symp. on Theory of Computing, Los Angeles, CA, pp. 123-134.

16. Gallaire, H., Minker, J., and Nicolas, J. M. Advances in Data Base Theory.
Vol. 1, Plenum Press, New York, 1981.

17. Gray, J. The transaction concept: Virtues and limitations. Proc. ~,bry Large
Data Bases, Cannes, France, Sept. 9-11, 1981, pp. 144-154.

18. Griffiths, P. G., and Wade, B. W. An authorization mechanism for a rela-
tional database system. ACM TODS 1, 3 (Sept. 1976}, 242-255.

19. Held. G. ENCOMPASS: A relational data manager. Data Base/81,
Western Institute of Computer Science, Univ. of Santa Clara, Santa
Clara, Calif., Aug. 24-28, 1981.

20. Keller, A. M. Updates to relational databases through views involving
joins. Report RJ3282, IBM Research Laboratory, San Jose, Calif., October
27, 1981.

21. Lorie, R. A., and Nilsson, J. E An access specification language for a
relational data base system. IBMJ. Res & Dev. 23, 3 (May 1979}, 286-298.

22. Maller, V. A. J. The content addressable file store -- CAFS. ICL Technical
J. 1, 3 {Nov. 1979), 265-279.

23. Reisner, E Human factors studies of database query languages: A survey
and assessment. ACM Computing Surveys 13, 1 {March 1981), 13-31.

24. Rissanen, J. Theory of relations for databases--A tutorial survey. Proc.
Syrup. on Mathematical Foundations of Computer Science, Zakopane,
Poland, September 1978, Lecture Notes in Computer Science, No. 64,
Springer Verlag, New York, 1978.

25. Rothnie, J. B., Jr., et al. Introduction to a system for distributed databases
{SDD-1). ACM TODS 5, 1 {March 1980}, 1-17.

26. Schmidt, J. W. Some high level language constructs for data of type rela-
tion. ACM TODS 2, 3 {Sept. 19771, 247-261.

27. Selinger, P. G., et al. Access path selection in a relational database
system. Proc. 1979 ACM SIGMOD International Conference on Manage-
ment of Data, Boston, Mass., May 1979, pp. 23-34.

408 E.F. CODD

28. - - - - - - SQL/Data system for VSE: A relational data system for applica-
tion development. IBM Corp. Data Processing Division, White Plains,
N.Y., G320-6590, Feb. 1981.

29. Stonebraker, M. R., et al. The design and implementation of INGRES,
ACM TODS 1, 3 (Sept. 1976), 189-222.

30. Stonebraker, M. R., and Neuhold, E. J. A distributed data base version
of INGRES. Proc. Second Berkeley Workshop on Distributed Data Manage-
ment and Computer Networks, Lawrence-Berkeley Lab., Berkeley, Calif.,
May 1977, pp. 19-36.

31. Todd., S. J. P. The Peterlee relational test vehicle-- A system overview.
IBM SystemsJ. 15, 4 (1976}, 285-308.

32. Williams, R. et al. R*: An overview of the architecture. Report RJ 3325,
IBM Research Laboratory, San Jose, Calif., Oct. 27, 1981.

33. Zloof, M.M. Query by example. Proe. NCC, AFIPS, Vol. 44, May 1975,
pp. 431-438.

' l n r i ng
Award
I,e¢lul't'

C a t e g o r i e s a n d S u b j e c t D e s c r i p t o r s :
D.2.9 [Software Engineering]: Management--productivity; D.3.4
[Programming Languages]: Processors--compilers; H.2.1 [Database
Management]: Logical Design--data models

G e n e r a l Te rm s :
Design, Human Factors, Languages, Performance

A d d i t i o n a l Key W o r d s a n d P h r a s e s :
Data sublanguage, host languages, relational model

Relational Database: A Practical Foundation for Productivity 409

Postscript

E. E CODD
Codd and Date Consult ing Group

San Jose, Calif.

Two aims of my Turing Award paper were (1) to emphasize that the relational
model specifies more than the structural aspects of data as seen by users - -
it specifies manipulative and integrity aspects too, and (2) to establish a minimal
collection of features of the relational model which could be used to distinguish
relational database management systems (DBMs) from nonrelational systems.
To be termed "relational" a DBMS would have to support each one of these
features.

In the first half of the 1980s most vendors announced DBMS products which
they claimed to be relational. Many, however, claimed their products to be "fully
relational," when in fact their products met only the minimal requirements
to be termed relational. A few vendors released products which failed to meet
even the minimal requirements, but loudly claimed them to be "fully relational"
in their manuals, in their advertisements, and in their presentations and press
releases.

To protect users who might be expecting to reap all the benefits associated
with the relational approach, I decided in the fall of 1985 to publish the two-
part article "How Relational is Your Database Management System?" in
Computerworld (October 14 and 21). In Part 1 of this paper I described 12 rules,
each of which had to be fully supported by a DBMS product, if that product
had a chance of being truthfully claimed to be fully relational. In Part II, I rated
three widely advertised DBMS products intended pr imari ly for large main-
frames. Two of these three products each received a score of zero on their
support for the 12 rules.

I believe that these papers have had the very salutary effect of reducing
the frequency of flamboyant claims from vendors in the area of relational
databases.

410

