
1 9 7 6
T u r i n g
A w a r d
Lecture

Logic and
Programming Languages

DANA S. SCOTT
University of Oxford

[Dana S. Scott was one of two recipients of the 1976 Turing Award presented
at the A C M Annual Conference in Houston on October 20. M. O. Rabin's
paper, Complexity of Computations, appears on page 319.]

Logic has been long interested in whether answers to certain questions are comput-
able in principle, since the outcome puts bounds on the possibilities of formalization.
More recently, precise comparisons in the efficiency of decision methods have
become available through the developments in complexity theory. These, however,
are applications to logic, and a big question is whether methods of logic have
significance in the other direction for the more applied parts of computability theory.

Programming !anguages offer an obvious opportunity as their syntactic formali-
zation is well advanced; however, the semantical theory can hardly be said to be
complete. Though we have many examples, we have still to give wide-ranging
mathematical answers to these queries: What is a machine? What is a computable
process? How (or how well) does a machine simulate a process? Programs naturally
enter in giving descriptions of processes. The definition of the precise meaning
of a program then requires us to explain what are the objects of computation (in
a way, the statics of tile problem) and how they are to be transformed (the dynamics).

So far the theories of automata and of nets, though most interesting for dynamics,
have formalized only a portion of the field, and there has been perhaps too much
concentration of the finite-state and algebraic aspects. It would seem that the
understanding of higher-level program features involves us with infinite objects
and forces us to pass through several levels of explanation to go from the concep-
tual ideas to the final simulation on a real machine. These levels can be made
mathematically exact if we can find the right abstractions to represent the
necessary structures.

Author's present address: Department of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, PA 15213.

47

The experience of many independent workers with the method of data types as
lattices Ior partial orderingsl under an information content ordering, and with their
continuous mappings, has demonstrated the flexibility of this approach in providing
definitions and proofs, which are clean and without undue dependence on imple-
mentations. Nevertheless much remains to be done in showing how abstract concep-
tualizations can Ior cannotl be actualized before we can say we have a unified theory.

As the eleven-and-one-half-th Turing lecturer, it gives me the greatest
pleasure to share this prize and this podium with Michael Rabin. Alas,
we have not had much chance to collaborate since the t ime of writing
our 1959 paper, and that is for me a great loss. I work best in collabora-
tion, but it is not easy to arrange the right condi t ions-- especially in
interdisciplinary subjects and where people are separated by inter-
national boundaries. But I have followed his career with deep interest
and admiration. As you have heard today, Rabin has been able to apply
ideas from logic having to do with decidability, computability, and com-
plexity to questions of real mathematical and computat ional interest.
He, and many others, are actively creating new methods of analysis
for a wide class of algorithmic problems which has great promise for
future development. These aspects of the theory of computat ion are,
however, quite outside my competence, since over the years my
interests have diverged f rom those of Rabin. From the late 1960's my
own work has concentra ted on seeing whe the r the ideas of logic can
be used to give a better conceptual unders tanding of programming
languages. I shall therefore not speak today in detail about my past joint
work with Rabin but about my own development and some plans and
hopes for the future.

The difficulty of obtaining a precise overall view of a language
arose during the period when committees were constructing mammoth
"universal" computer languages. We stand now, it seems, on the
doorstep of yet another technological revolution during which our
ideas of machines and software are going to be complete ly changed.
II have just noted that the ACM is campaigning again to e l iminate ' the
word 'machine' altogether. I The big, big languages may prove to be
not very adaptable, but I think the problem of semantics will surely
remain. I would like to think that the w o rk - - ag a in done in collabora-
tion with other people, most notably with the late Chris topher
Strachey -- has made a basic contr ibut ion to the foundat ions of the
semantic enterprise. Well, we shall see. I hope too that the research
on semantics will not too much longer remain disjoint f rom investiga-
tions like Rabin's.

An Apology and a Nonapo logy
As a rule, I think, public speakers should not apologize: it only makes

the audience uncomfortable. At such a meeting as this, however, one
apology is necessary lalong with a disclaimer).

Those of you who know my background may well be reminded
of Sir Nicholas Gimcrack, hero of the play The Virtuoso. It was wri t ten

48 DANA S. SCOTT

in 1676 by Thomas Shadwell to poke a little fun at the remarkable
experiments then being done before the Royal Society of London. At
one point in the play, Sir Nicholas is discovered lying on a table trying
to learn to swim by imitating the motions of a frog in a bowl of water.
When asked whether he had ever practiced swimming in water, he
replies that he hates water and would never go near it! "I content
myself," he said, "with the speculative part of swimming; I care not
for the practical. I seldom bring anything to use Knowledge is the
ultimate end:'

Now though our ultimate aims are the same, I hasten to disassociate
myself from the attitude of disdain for the practical. It is, however, the
case that I have no practical experience in present-day programming; by
necessity I have had to confine myself to speculative programming, gain-
ing what knowledge I could at second hand by watching various frogs
and other creatures. Luckily for me, some of the frogs could speak. With
some of them I have had to learn an alien language, and perhaps I have
not understood what they were about. But I have tried to read and to
keep up with developments. I apologize for not being a professional
in the programming field, and I certainly, therefore, will not try to
sermonize: many of the past Turing lecturers were well equipped for
that, and they have given us very good advice. What I try to do is to
make some results from logic which seem to me to be relevant to
computing comprehensible to those who could make use of them. I have
also tried to add some resuits of my own, and I have to leave it to you
to judge how successful my activities have been.

Most fortunately today I do not have to apologize for the lack of
published material; if I had written this talk the day I received the invi-
tation, I might have. But in the August number of Communications we
have the excellent tutorial paper by Robert Tennent [14] on denotational
semantics, and I very warmly recommend it as a starting place. Tennent
not only provides serious examples going well beyond what Strachey
and I ever published, but he also has a well-organized bibliography.

Only last month the very hefty book by Milne and Strachey [9]
was published. Strachey's shockingly sudden and untimely death unfor-
tunately prevented him from ever starting on the revision of the
manuscript. We have lost much in style and insight (to say nothing of
inspiration) by Strachey's passing, but Robert Milne has carried out their
plan admirably. What is important about the book is that it pushes
the discussion of a complex language through from the beginning to
the end. Some may find the presentation too rigorous, but the point
is that the semantics of the book is not mere speculation but the real
thing. It is the product of serious and informed thought; thus, one
has the detailed evidence to decide whether the approach is going
to be fruitful. Milne has organized the exposition so one can grasp
the language on many levels down to the final compiler. He has not
tried to sidestep any difficulties. Though not lighthearted and biting,
as Strachey often was in conversation, the book is a very fitting

I ~!D 7 (i
' l u r i n g

/ lw lu l ' (I

IA'(IurI"

Logic and Programming Languages 49

memorial to the last phase of Strachey's work, and it contains any
number of original contributions by Milne himself. {I can say these
things because I had no hand in writing the book myself.}

Recently published also is the volume by Donahue [4]. This is a not
too long and very readable work that discusses issues not covered, or
not covered from the same point of view, by the previously mentioned
references. Again, it was written quite independently of Strachey and
me, and I was very glad to see its appearance.

Soon to come out is the textbook by Joe Stoy [13]. This will comple-
ment these other works and should be very useful for teaching, because
Stoy has excellent experience in lecturing, both at Oxford University
and at M.I.T.

On the foundational side, my own revised paper {Scott [12]} will be
out any moment in the SIAM Journal on Computing. As it was written
from the point of view of enumeration operators in more "classical"
recursion theory, its relevance to practical computing may not be at
all clear at first glance. Thus I am relieved that these other references
explain the uses of the theory in the way I intended.

Fortunately all the above authors cite the literature extensively, and
so I can neglect going into further historical detail today. May I only say
that many other people have taken up various of the ideas of Strachey
and myself, and you can find out about their work not only from these
bibliographies but also, for example, from two recent conference pro-
ceedings, Manes [7] and B6hm [1]. If I tried to list names here, I would
only leave some out--those that have had contact with me know how
much I appreciate their interest and contributions.

S o m e P e r s o n a l N o t e s
I was born in California and began my work in mathematical logic

as an undergraduate at Berkeley in the early 1950's. The primary
influence was, of course, Alfred Tarski together with his many
colleagues and students at the University of California. Among many
other things, I learned recursive function theory from Raphael and Julia
Robinson, whom I want to thank for numerous insights. Also at the
time through self-study I found out about the k-calculus of Curry and
Church (which, literally, gave me nightmares at first}. Especially
important for my later ideas was the study of Tarski's semantics and
his definition of truth for formalized languages. These concepts are still
being hotly debated today in the philosophy of natural language, as you
know. I have tried to carry over the spirit of Tarski's approach to
algorithmic languages, which at least have the advantage of being
reasonably well formalized syntactically. Whether I have found the right
denotations of terms as guided by the schemes of Strachey (and worked
out by many hands} is what needs discussion. I am the first to say that
not all problems are solved just by giving denotations to some languages.
Languages like (the very pure} k-calculus are well served but many pro-
gramming concepts are still not covered.

50 DANA S. SCOTT

My graduate work was completed in Princeton in 1958 under the
direction of Alonzo Church, who also supervised Michael Rabin's thesis.
Rabin and I met at that time, but it was during an IBM summer job in
1957 that we did our joint work on automata theory. It was hardly
carried out in a vacuum, since many people were working in the area;
but we did manage to throw some basic ideas into sharp relief. At the
time I was certainly thinking of a project of giving a mathematical defini-
tion of a machine. I feel now that the finite-state approach is only
partially successful and without much in the way of practical implica-
tion. True, many physical machines can be modelled as finite-state
devices; but the finiteness is hardly the most important feature, and the
automata point of view is often rather superficial.

Two later developments made automata seem to me more interest-
ing, at least mathematically: the Chomsky hierarchy and the connec-
tions with semigroups. From the algebraic point of view (to my taste at
least I Eilenberg, the Euclid of automata theory, in his books [5] has said
pret ty much the last word. I note too that he has avoided abstract
category theory. Categories may lead to good things {cf. Manes [711, but
too early a use can only make things too difficult to understand. That
is my personal opinion.

In some ways the Chomsky hierarchy is in the end disappointing.
Context-free languages are very important and everyone has to learn
about them, but it is not at all clear to me what comes next - - if anything.
There are so many other families of languages, but not much order has
come out of the chaos. I do not think the last word has been said here. It
was not knowing where to turn, and being displeased with what I
thought was excessive complexity, that made me give up working in
automata theory. I tried once in a certain way to connect automata and
programming languages by suggesting a more systematic way of separat-
ing the machine from the program. Eilenberg heartily disliked the idea,
but I was glad to see the recent book by Clark and Cowell [2] where,
at the suggestion of Peter Landin, the idea is carried out very nicely.
It is not algebra, I admit, but it seems to me to be {elementary, somewhat
theoretical} programming. I would like to see the next step, which would
fall somewhere in be tween Manna [8] and Milne-Strachey [9].

It was at Princeton that I had my first introduction to real
machines - - the now almost prehistoric von Neumann machine. I have
to thank Forman Acton for that. Old fashioned as it seems now, it was
still real; and Hale Trotter and I had great fun with it. How very sad
I was indeed to see the totally dead corpse in the Smithsonian Museum
with no indication at all what it was like w h en it was alive.

From Princeton I went to the University of Chicago to teach in the
Mathematics Depar tment for two years. Though I met Bob Ashenhurst
and Nick Metropolis at that time, my stay was too short to learn from
them; and as usual there is always too great a distance between depart-
ments. [Of course, since I am only writing about connections with
computing, I am not trying to explain my other activities in mathematics
and logic.I

I 9 7 6

' l . r i . g

A w a r d

I, t ' (' l I I I't"

Logic and Programming Languages 51

From Chicago I went to Berkeley for three years. There I met
many computer people through Harry Huskey and Ren~ de Vogelaere,
the latter of whom introduced me to the details of Algol 60. There
was, however, no Computer Science Department as such in Berkeley
at that time. For personal reasons I decided soon to move to Stanford.
Thus, though I taught a course in Theory of Computation at Berkeley
for one semester, my work did not amount to anything. One thing
I shall always regret about Berkeley and Computing is that I never
learned the details of the work of Dick and Emma Lehmer, because
I very much admire the way they get results in number theory by
machine. Now that we have the Four-Color Problem solved by machine,
we are going to see great activity in large-scale, special-purpose theorem
proving. I am very sorry not to have any hand in it.

Stanford had from the early 1960's one of the best Computer Science
departments in the country, as everyone agrees. You will wonder why
I ever left. The answer may be that my appointment was a mixed one
between the departments of Philosophy and Mathematics. I suppose
my personal difficulty is knowing where I should be and what I want
to do. But personal failings aside, I had excellent contacts in Forsythe's
remarkable department and very good relations with the graduates,
and we had many lively courses and seminars. John McCarthy and
Pat Suppes, and people from their groups, had much influence on
me and my views of computing. In Logic, with my colleagues Sol
Feferman and Georg Kreisel, we had a very active group. Among
the many Ph.D. students in Logic, the work of Richard Platek had
a few years later, when I saw how to use some of his ideas, much
influence on me.

At this point I had a year's leave in Amsterdam which proved
unexpectedly to be a turning point in my intellectual development.
I shall not go into detail, since the story is complicated; but the academic
year 1968/69 was one of deep crisis for me, and it is still very painful
for me to think back on it. As luck would have it, however, Pat Suppes
had proposed my name for the IFIP Working Group 2.2 [now called
Formal Description of Programming Concepts). At that time Tom Steel
was Chairman, and it was at the Vienna meeting that I first met
Christopher Strachey. If the violence of the arguments in this group
is any indication, I am really glad I was not involved with anything
important like the Algol Committee. But I suppose fighting is
therapeutic: it brings out the best and the worst in people. And in
any case it is good to learn to defend oneself. Among the various
combatants I liked the style and ideas of Strachey best, though I think
he often overstated his case; but what he said convinced me I should
learn more.

It was only at the end of my year in Amsterdam that I began to
talk with Jaco de Bakker, and it was only through correspondence
over that summer that our ideas took definite shape. The Vienna
IBM Group that I met through WG 2.2 influenced me at this stage

52 DANA S. SCOTT

also. In the meantime I had decided to leave Stanford for the Princeton
Philosophy Department; but since I was in Europe with my family,
I requested an extra term's leave so I could visit Strachey in Oxford
in the fall of 1969. That term was one of feverish activity for me;
indeed, for several days, I felt as though I had some kind of real brain
fever. The collaboration with Strachey in those few weeks was one
of the best experiences in my professional life. We were able to repeat
it once more the next summer in Princeton, though at a different level
of excitement. Sadly, by the time I came to Oxford permanently in
1972, we were both so involved in teaching and administrative duties
that real collaboration was nearly impossible. Strachey also became
very discouraged over the continuing lack of research funds and help
in teaching, and he essentially withdrew himself to write his book
with Milne. (It was a great effort and I do not think it did his health
any good; how I wish he could have seen it published.)

Returning to 1969, what I started to do was to show Strachey that
he was all w r o n g and that he ought to do things in quite another way.
He had originally had his attention drawn to the k-calculus by Roger
Penrose and had developed a handy style of using this notation for
functional abstraction in explaining programming concepts. It was
a fo rma l device, however, and I tried to argue that it had no mathematical
basis. I have told this story before, so to make it short, let me only
say that in the first place I had actually convinced him by "superior
logic" to give up the type-free X-calculus. But then, as one consequence
of my suggestions followed the other, I began to see that computable
functions could be defined on a great variety of spaces. The real step
was to see that function-spaces were good spaces, and I remember quite
clearly tha t the logician Andrzej Mostowski, who was also visiting
Oxford at the time, simply did not believe that the kind of function
spaces I defined had a constructive description. But when I saw they
actually did, I began to suspect that the possibilities of using function
spaces might just be more surprising than we had supposed. Once
the doubt about the enforced rigidity of logical types that I had tried
to push onto Strachey was there, it was not long before I had found
one of the spaces isomorphic with its own function space, which
provides a model of the "type-free" X-calculus. The rest of the story
is in the literature.

(An interesting sidelight on the X-calculus is the r61e of Alan Turing.
He studied at Princeton with Church and connected computability
with the (formal) X-calculus around 1936/37. Illuminating details of
how his work (and the further influence of X-calculus) was viewed
by Steve Kleene can be found in Crossley [3]. (Of course Turing's
later ideas about computers very much influenced Strachey, but this
is not the time for a complete historical analysis.) Though I never
met Turing (he died in 1954), the second-hand connections through
Church and Strachey and my present Oxford colleagues, Les Fox and
Robin Gandy, are rather close, though by the time I was a graduate

! 9 7 l i

' l l l r i n g
~IWiI I ' l l
1.1'¢'1 l l r t '

Logic and Programming Languages 53

at Princeton, Church was no longer working on the k-calculus, and we
never discussed his experiences with Turing.)

It is very strange that my k-calculus models were not discovered
earlier by someone else; but I am most encouraged that new kinds
of models with new properties are now being discovered, such as the
"powerdomains" of Gordon Plotkin [10]. I am personally convinced
that the field is well established, both on the theoretical and on the
applie d side. John Reynolds and Robert Milne have independently
introduced a new inductive method of proving equivalences, and the
interesting work of Robin Milner on LCF and its proof techniques
continues at Edinburgh. This direction of proving things about models
was started off by David Park's theorem on relating the fixed-point
operator and the so-called paradoxical combinator of k-calculus, and
it opened up a study of the infinitary, yet computable operators which
continues now along many lines. Another direction of work goes
on in Novosibirsk under Yu. L. Ershov, and quite surprising connections
with topological algebra have been pointed out to me by Karl H.
Hofmann and his group. There is no space here even to begin to list
the many contributors.

In looking forward to the next few years, I am particularly happy
to report at this meeting that Tony Hoare has recently accepted the
Chair of Computation at Oxford, now made permanent since Strachey's
passing. This opens up all sorts of new possibilities for collaboration,
both with Hoare and with the many students he will attract after
he takes up the post next year. And, as you know, the practical aspects
of use and design of computer languages and of programming
methodology will certainly be stressed at Oxford (as Strachey did
too, I hasten to add), and this is all to the good; but there is also
excellent hope for theoretical investigations.

Some Semant ic Structures
Turning now to technical details, I should like to give a brief indica-

tion of how my construction goes, and how it is open to considerable
variation. It will not be possible to argue here that these are the "right"
abstractions, and that is why it is a relief to have those references
mentioned earlier so easily available.

Perhaps the quickest indication of what I am getting at is provided
by two domains: ~ , the domain of Boolean values, and ~f = ~o , the
domain of infinite sequences of Boolean values. The first main point is
that we are going to accept the idea of partial functions represented
mathematically by giving the functions from time to time partial values.
As far as ~ goes the idea is very trivial: we write

= { true, false, .1. }

where ± is an extra element called "the undefined." In order to keep
± in its place we impose a partial ordering = on the domain ~ , where

x = y i f f e i t he r x = ± o r x = y,

54 DANA S. SCOTT

for all x, y ~ . It will not mean all that much here in ~ , but we can
read "~ " as saying that the information content of x is contained
in the information content of y. The element 3_ has, therefore, empty
information content. The scheme is illustrated in Figure 1.

' l o r l ng
Award
I,eclorc

t rue false

J.

FIGURE 1. The Boolean values.

(An aside: in many publications I have advocated using lattices,
which as partial orderings have a "top" element T as well as a "bottom"
element 1, so that we can assert ± c x z T for all elements of the domain.
This suggestion has not been well received for many reasons I cannot
go into here. Some discussion of its reasonableness is to be found in
Scott [12], but of course the structure studied there is special. Probably
it is best neither to exclude or include a ± ; and, for simplicity, I shall
not mention it further today.)

Looking now at U ~, the domain of sequences, we shall employ
a shorthand notation where subscripts indicate the coordinates; thus,

X : Xn n = O

for all x ~2 ~f. Each term is such that xnEB, because ~f = ~o .
Technically, a "direct product" of structures is intended, so we define
c on ~f by

x ~ y i f fxn z Yn, for al ln.

Intuitively, a sequence y is "better" in information than a sequence x
iff some of the coordinates of x which were "undefined" have passed
over into "being defined" when we go from x to y. For example, each
of the following sequences stands in the relation ~ to the following ones:

<i,±,i,± },
(true, ± , 3-, J_ >,
(true, false, ±, ± , . . .),
(true, false, true, ± >.

Clearly this list could be expanded infinitely, and there is also no need
to treat the coordinates in the strict order n = 0, 1, 2 Thus the
g relation on J is far more complex than the original z on ~8.

Logic and Programming Languages 55

An obvious difference be tween ~ and ~f is that ~ is finite while
J" has infinitely many elements. In ~£, also, certain elements have
infinite information content, whereas this is not so in ~ . However, we
can employ the partial ordering in ~£ to explain abstractly what we
mean by "finite approximation" and "limits." The sequences listed above
are finite in ~f because they have only finitely many coordinates distinct
f rom ±. Given any x E ~f we can cut it down to a finite e lement by
defining

; x , if n < m;
(xl m)n

1, if not.

It is easy to see from our definitions that

x] m c_x l (m + 1) _Cx,

so that the x I m are "building up" to a limit; and, in fact, that limit
is the original x. We write this as

x = ~ J (x I m) ,
ln=O

where ,U is the sup or least-upper-bound operation in the partially
ordered set ~f. The point is that , f has many sups; and, wheneve r we
have elements y(m) c y(~ + ~) in d ~ [regardless of whe ther they are finite
or not}, we can define the "limit" z, where

o o

z = U y(').
I l l = 11

[Hint: ask yourself what the coordinates of z will have to be.) We
cannot rehash the details here, but ~f really is a topological space, and
z really is a limit. Thus, though ~f is infinitary, there is a good chance
that we can let manipulat ions fall back on finitary operations and be
able to discuss computable operations on ~f and on more complex
domains.

Aside from the sequence and partial-order s tructure on ~f, we can
define many kinds of algebraic structure. That is why ~f is a good
example. For instance, up to isomorphism the space satisfies

d ' = d" x d',

where on the right-hand side the usual binary direct product is
intended. Abstractly, the domain d" x ~f consists of all ordered pairs
(x ,y) w i thx , y E J , where we define g on d ~ × ~ f b y

(x, y) c .(x', y') iff x c x ' and y c y' .

But for all practical purposes there is no harm in identifying
(x, y) with a sequence already in ~f; indeed coordinatewise we can
define

I x k, i f n = 2k;
(x, Y)~ = ILYk' i f n 2k + 1.

56 DANA S. SCOTT

The above criterion for c be tween pairs will be verified, and we can
say that ~f has a {bi-unique) pairing function.

The pairing function (.,.) on ~f has many interesting properties.
In effect we have already noted that it is monotonic (intuitively: as you
increase the information contents of x and y, you increase the
information content of (x, y). More importantly, (.,.) is continuous in
the following precise sense:

oo

(x ,y) = LI (x l m , y] m),
I t l = O

which means that (.,.) behaves well under taking finite approximations.
And this is only one example; the whole theory of monotone and
continuous functions is very important to this approach.

Even with the small amount of s tructure we have put on ~f,
a language suggests itself. For the sake of illustration, we concentrate
on the two isomorphisms satisfied by U~; namely, ~f = ~ x ~f and
~f = ~f x ~f. The first identified ~f as having to do with (infinite)
sequences of Boolean values; while the second reminds us of the above
discussion of the pairing function. In Figure 2 we set down a quick BNF
definition of a language with two kinds of expressions: Boolean {the fl's)
and sequential (the a's).

I 9 7 6

'1 . r i n g
A w a r d
I,c(' lurc

:: = t rue I fa l se I h e a d a

a : : = ~ *] ~ a l t a i l a l
i f /3 t h e n a' e l se a" 1

e v e n a I o d d a I m e r g e a' a"

FIGUR~ 2. A brief language.

This language is very brief indeed: no variables, no declarations,
no assignments, only a miniature selection of constant terms. Note
that the notation chosen was meant to make the meanings of these
expressions obvious. Thus, if a denotes a sequence x, then h e a d a has
got to denote the first t e rm x0 of the sequence x. As Xo E ~ and x E U ~,
we are keeping our types straight.

More precisely, for each expression we can define its (constant)
value ~ . ~ ; so that ~ fl] E ~ for Boolean expressions /3, and

a" ~ E U ~ for sequential expressions. Since there are ten clauses in
the BNF language definition, we would have to set down ten equations
to completely specify the semantics of this example; we shall content
ourselves with selected equations here. To carry on with the remark
in the last paragraph:

h e a d a ~ = ~ a ~ o .

On the other side, the expression/3" creates an infinite sequence of
Boolean values:

E f t] >.

Logic and Programming Languages 57

=

while we have

t a i l a

Further along:

even a]]

and

(This notation, though rough, is clear.) In the same vein:

These should be enough to give the idea. It should also be clear that
what we have is really only a selection, because ~f satisfies many more
isomorphisms (e.g., ~f = ~f x ~f x ~f), and there are many, many
more ways of tearing apart and recombining sequences of Boolean
va lues - -a l l in quite computable ways.

T h e F u n c t i o n S p a c e
It should not be concluded that the previous section contains the

whole of my idea: this would leave us on the e lementary level of
program schemes (e.g., van Emden-Kowalski [6] or Manna [8] (last
chapter}). What some people call "Fixpoint Semantics" (I myself do not
like the abbreviated word "fixpoint") is only a first chapter. The second
chapter a l ready includes p rocedures that take p rocedures as
arguments -- higher type procedures -- and we are well beyond program
schemes. True, fixed-point techniques can be applied to these higher-
type procedures, but that is not the only thing to say in their favor. The
semantic s t ructure needed to make this definite is the function space.
I have tried to stress this f rom the start in 1969, but many people have
not unders tood me well enough.

Suppose ~ ' and ~ " are two domains of the kind we have been
discussing (say, ~ or ~ x ~ or ~for something worse). By [~ ' ~ ~"]
let us understand the domain of all monotone and continuous functions
f m a p p i n g ~ ' into ~". This is what I mean by a function space. It is not
all that difficult mathematically, but it is not all that obvious either that
[~'--~ ~"] is again a domain "of the same kind," though admit tedly of
a more complicated structure. I cannot prove it here, but at least I can
define the c_ relation on the function space:

f c g i f f f (x) c_g(x) for a l l x E ~ :

Treating functions as abstract objects is nothing new; what has to be
checked is that they are also quite reasonable objects of computation.
The relation [] on [~ ' ~ ~"] is the first step in checking this, and it
leads to a well-behaved notion of a finite approximation to a function.
(Sorry! there is no time to be more precise here.) And when that is seen,

58 DANA S. SCOTT

the way is open to iteration of function spaces; as in [[~0'~ ~ "] ~ ~ "] .
This is not as crazy as it might seem at first, since our theory identifies
f(x) as a computable binary function of variable l a n d variable x. Thus,
as an operation, it can be seen as an element of a funct ion space:

[[[~ ' ~ , ,] x ~ ,] ~ "] .

This is only the start of a theory of these operators {or combinators, as
Curry and Church call them}.

Swallowing all this, let us at tempt an infinite iteration of function
spaces beginning with ~f. We define ,~o -- ~f and ~Y~ + ~ = [~ ~ ~f].
Thus 57~ = [~f ~ ~f] and

= [[[[~ --,. ~] - , . ~] - , ~] .

You just have to believe me that this is all highly constructive {because
we employ only the continuous functionsl.

It is fairly clear that there is a natural sense in which this is
cumulative. In the first place ~f is "contained in" [~f -~ ~f] as a subspace:
identify each x E ~f with the corresponding constant function in
[d" ~ ~f]. Clearly by our definitions this is an order-preserving cor-
respondence. Also each f ~ [G" ~ ~f] is [crudely} approximated by a
constant, n a m e l y f (l) {this is the "best" e lement g all the valuesf(x) I.
This relationship of 'subspace and approximation oetween spaces will
be denoted by ~f <~ [d" ~ ~f].

Pushing higher we can say

[~f ~ ~f] <~ [[~ ~ ~] ~ ~f],

but now for a different reason. Once we fix the reason why d" <~
[J ~ ~f], we have to respect the funct ion space structure of the
higher 5~. In the special case, suppose f ~ [~f ~ ~f]. We want to in-
ject f i n t o the next space, so call it i (f) ~ [~ f ~ ~f] ~ ~f. If g is any
e lement in [~f ~ d"] we are being required to define i (f) (g) ~ d..
Now, since g ~.[J ~ ~f], we have the original projection backwards
j (g) = g (l) ~ ~f. So, as this is the best approximation to g we can get
in ~f, we are stuck with defining

i (f) (g) = f (j (g)) .

This gives the next map i: g l ~ ~7"2. To define the corresponding
projection j: J'2 ~ 5-1, we argue in a similar way and define

j(4~) (x) = ch(i(x)),

where we have • ~ [~f ~ ~f] ~ ~f, and i (x) E [d" ~ , f] is the constant
function with value x. With this progression in mind there is no

Logic and Programming Languages 59

trouble in using an exactly similar plan in defining i: 3-2 ~ ~z-3 and
j: ,-~'3 -+ 3"2. And so on, giving the exact sense to the cumulation:

3-o <~ ,-~'l <1 ,~'2"q • • • <~ 3 . . 4 ~-n+l<J

Having all this, it would be a pity not to pass to the limit (this t ime
with spaces), and this is just what I want you to accept. What is obtain-
ed by decreeing that there is a space

g . = lim ~rn?
n ~ o o

Since the separate stages interact thus:

3 . + , = [J-o - . . f 1,

it is not so queer to guess that

holds (at least up to i somorphism I. It does, but I can only indicate
the bare bones of the reason (and reasonablenessl of this isomorphism.
In the first place the separate spaces 5 r have been placed one inside
another, which not only makes a tower of spaces but also respects
the combinat ion f (x) as an algebraic operat ion of two variables, g-o~
in a precise sense is the complet ion of the union of the ~'n ; that is
within these spaces we can think of towers of functions each approx-
imating the next (by the use of the i and j mappingsl, so that in ~7-0o
these towers are given limits. If the towers are truncated, then we can
argue that each space ~-, <J 3"00.

Now why the isomorphism of ~-oo? Take a funct ion (continuous! 1
in [g o o ~ , f]. By its very continuity it will be de termined by what
it does to the finite levels J-n. That is, it will have better and better
approximations in [3-, ~ ~f] = 3,+~; thus, the approximations "live"
in the finite levels of 3-o0 • Their limit ought to just give us back the
funct ion [2;z'~ ~ J] we started with. In the same way any element in
g ~ can be regarded as a limit of approximate functions in the spaces
[3 , ~ ~f]. Admittedly there are details to check; but, in the limit,
there is no real difference be tween ,_~-~ and [goo--,~£]: the infinite
level of higher type functions is its own funct ion space. {As always: this
is a consequence of continuity. I

Much structure is lurking under the surface here; in fact more
than I thought at first. In Figure 3, I illustrate a chain of isomorphisms
that shows that ~Z-gets much of the character of ~f with which we
are already familiar. The reasons why these are valid are as follows.
First, we treat ~-~ as a funct ion space. Now pairs of functions can
be isomorphical ly put into correspondence with functions taking on

60 DANA S. SCOTT

pairs of values. But ~f x d " = d ' as we already know. The final step just
puts functions on 5v-oo back to elements of 5too.

= [~ ~ , f] x [3 % ~ a ']
= [,-¢L ~ d " x d-']
= [J-~ + d ']

= ,..~-oo

FIGURE 3. The first chain of isomorphisms.

Using the isomorphsim of Figure 3, we can gain the fur ther result
illustrated in Figure 4. The reasons are fairly clear. Take a function from
J-oo to ~roo. The values of this function can be construed as functions.

[[3 - . x ~ .] ~ ~f]

[3-oo~ d ']

FIGURE 4. The second chain of isomorphisms.

But consider that a funct ion whose values are functions is just (up to
isomorphism of spaces) a function of two arguments. As we have seen
in Figure 3, ~7-oo x ~7-~ = 5z'o~, so we obtain the final simplification [up
to isomorphism).

What we have done is to sketch why J ' ~ , the space of functions
of infinite type, is a model of the X-calculus. The X-calculus is a language
[not illustrated betel, where every term can be regarded as denoting
both an argument (or value) and a funct ion at the same time. The
formal details are pret ty simple, but the semantical details are what we
have been looking at: every element of the space 5~-~o can be taken
at the same time as being an element of the space [5rod ~ 5z-~]; thus,
• ~-o~ provides a model, but it is just one of many.

Without being able to be explicit, a denotational (or mathematical I
semantics was outlined for a pure language of procedures (also pairs
and all the other stuff in Figure 2}. In the references cited on real
programming languages, all the other features (of assignments,
sequencing, declarations, etc., etc. I are added. What has been established
in these references is that the method of semantical definition does in
fact work. I hope you will look into it.

References
1. Bohm, C., Ed. A-Calculus and Computer Science Theory. Lecture Notes in

Computer Science, VoL 37. Springer-Verlag, New York, 1975.
2. Clark, K. L., and Cowell, D. F. Programs, Machines, and Computation.

McGraw-Hill, New York, 1976.

Logic and Programming Languages 61

3. Crossley, J. N., Ed. Algebra and Logic Papers from the 1974 Summer
Res. Inst. Australian Math. Soc., Monash U. Clayton, Victoria, Australia.
Lecture Notes in Mathematics, Vol. 450, Springer-Verlag, 1976.

4. Donahue, J. E. Complementary Definitions of Programming Language
Semantics. Lecture Notes in Computer Science, Vol. 42, Springer-Verlag,
1976.

5. Eilenberg, S. Automata, Languages, and Machines. Academic Press, New
York, 1974.

6. van Emden, M. H., and Kowalski, R. A. The semantics of predicate logic
as a programming language. J. ACM 23, 4 {Oct. 1976), 733-742.

7. Manes, E. G., Ed. Category Theory Applied to Computation and
Control. First Int. Symp. Lecture Notes in Computer Science, Vol. 25,
Springer-Verlag, New York, 1976.

8. Manna, Z. Mathematical Theory of Computation. McGraw-Hill, New York,
1974.

9. Milne, R., and Strachey, C. A. Theory of Programming Language
Semantics. Chapman and Hall, London, and Wiley, New York, 2 Vols.,
1976.

10. i~lotkin, G. D. A powerdomain construction. SIAMJ. Comptng. 5 (1976},
452-487.

11. Rabin, M. O., and Scott, D. S. Finite automata and their decision
problems. IBM J. Res. and Develop. 3 {1959}, 114-125.

12. Scott, D. S. Data types as lattices. SIAMJ. Comptng. 5 (1976}, 522-587.
13. Stoy, J. E. Denotational Semantics--The Scott-Strachey Approach to

Programming Language Theory. M.I.T. Press, Cambridge, Mass.
14. Tennent, R. D. The denotational semantics of programming languages.

Comm. ACM 19, 8 {Aug. 1976}, 437-453.

Categories and Subject Descriptors:
E3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages--algebraic approaches to semantics; denotational semantics;
E4.1 [Mathematical Logic and Formal Languages[: Mathematical
Logic--lambda calculus and related systems; logic programming

General Terms:
Languages, Theory

Additional Key Words and Phrases:
Automata, context-free languages

62 DANA S. SCOTT

