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Logic has been long interested in whether answers to certain questions are comput- 
able in principle, since the outcome puts bounds on the possibilities of formalization. 
More recently, precise comparisons in the efficiency of decision methods have 
become available through the developments in complexity theory. These, however, 
are applications to logic, and a big question is whether methods of logic have 
significance in the other direction for the more applied parts of computability theory. 

Programming !anguages offer an obvious opportunity as their syntactic formali- 
zation is well advanced; however, the semantical theory can hardly be said to be 
complete. Though we have many examples, we have still to give wide-ranging 
mathematical answers to these queries: What is a machine? What is a computable 
process? How (or how well) does a machine simulate a process? Programs naturally 
enter in giving descriptions of processes. The definition of the precise meaning 
of a program then requires us to explain what are the objects of computation (in 
a way, the statics of tile problem) and how they are to be transformed (the dynamics). 

So far the theories of automata and of nets, though most interesting for dynamics, 
have formalized only a portion of the field, and there has been perhaps too much 
concentration of the finite-state and algebraic aspects. It would seem that the 
understanding of higher-level program features involves us with infinite objects 
and forces us to pass through several levels of explanation to go from the concep- 
tual ideas to the final simulation on a real machine. These levels can be made 
mathematically exact if we can find the right abstractions to represent the 
necessary structures. 
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The experience of many independent workers with the method of data types as 
lattices Ior partial orderingsl under an information content ordering, and with their 
continuous mappings, has demonstrated the flexibility of this approach in providing 
definitions and proofs, which are clean and without undue dependence on imple- 
mentations. Nevertheless much remains to be done in showing how abstract concep- 
tualizations can Ior cannotl be actualized before we can say we have a unified theory. 

As the eleven-and-one-half-th Turing lecturer, it gives me the greatest 
pleasure to share this prize and this podium with Michael Rabin. Alas, 
we have not had much  chance to collaborate since the t ime of writing 
our  1959 paper, and that is for me a great loss. I work best in collabora- 
tion, but  it is not easy to arrange the right condi t ions--  especially in 
interdisciplinary subjects and where  people are separated by inter- 
national boundaries.  But I have followed his career with deep interest 
and admiration. As you have heard today, Rabin has been able to apply 
ideas from logic having to do with decidability, computability, and com- 
plexity to questions of real mathematical  and computat ional  interest. 
He, and many  others, are actively creating new methods  of analysis 
for a wide class of algorithmic problems which has great promise for 
future development.  These aspects of the theory  of computat ion are, 
however,  quite outside my competence,  since over the years my 
interests have diverged f rom those of Rabin. From the late 1960's my 
own work has concentra ted on seeing whe the r  the ideas of logic can 
be used to give a better  conceptual unders tanding of programming 
languages. I shall therefore not speak today in detail about my past joint 
work with Rabin but  about  my own development  and some plans and 
hopes for the future. 

The difficulty of obtaining a precise overall view of a language 
arose during the period when  committees were constructing mammoth  
"universal" computer  languages. We stand now, it seems, on the 
doorstep of yet another  technological revolution during which our  
ideas of machines  and software are going to be complete ly  changed. 
II have just noted that the ACM is campaigning again to e l iminate ' the 
word 'machine'  altogether. I The big, big languages may prove to be 
not very  adaptable, but  I think the problem of semantics will surely 
remain. I would like to think that the w o rk - - ag a in  done in collabora- 
tion with other  people, most notably with the late Chris topher  
Strachey -- has made a basic contr ibut ion to the foundat ions of the 
semantic enterprise. Well, we shall see. I hope too that the research 
on semantics will not too much  longer remain disjoint f rom investiga- 
tions like Rabin's. 

An Apology and a Nonapo logy  
As a rule, I think, public speakers should not apologize: it only makes 

the audience uncomfortable.  At such a meeting as this, however,  one 
apology is necessary lalong with a disclaimer). 

Those of you who know my background may well be reminded 
of Sir Nicholas Gimcrack, hero of the play The Virtuoso. It was wri t ten 
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in 1676 by Thomas Shadwell to poke a little fun at the remarkable 
experiments then being done before the Royal Society of London. At 
one point in the play, Sir Nicholas is discovered lying on a table trying 
to learn to swim by imitating the motions of a frog in a bowl of water. 
When asked whether he had ever practiced swimming in water, he 
replies that he hates water and would never go near it! "I content 
myself," he said, "with the speculative part of swimming; I care not 
for the practical. I seldom bring anything to use .... Knowledge is the 
ultimate end:' 

Now though our ultimate aims are the same, I hasten to disassociate 
myself from the attitude of disdain for the practical. It is, however, the 
case that I have no practical experience in present-day programming; by 
necessity I have had to confine myself to speculative programming, gain- 
ing what knowledge I could at second hand by watching various frogs 
and other creatures. Luckily for me, some of the frogs could speak. With 
some of them I have had to learn an alien language, and perhaps I have 
not understood what they were about. But I have tried to read and to 
keep up with developments. I apologize for not being a professional 
in the programming field, and I certainly, therefore, will not try to 
sermonize: many of the past Turing lecturers were well equipped for 
that, and they have given us very good advice. What I try to do is to 
make some results from logic which seem to me to be relevant to 
computing comprehensible to those who could make use of them. I have 
also tried to add some resuits of my own, and I have to leave it to you 
to judge how successful my activities have been. 

Most fortunately today I do not have to apologize for the lack of 
published material; if I had written this talk the day I received the invi- 
tation, I might have. But in the August number of Communications we 
have the excellent tutorial paper by Robert Tennent [14] on denotational 
semantics, and I very warmly recommend it as a starting place. Tennent 
not only provides serious examples going well beyond what Strachey 
and I ever published, but he also has a well-organized bibliography. 

Only last month the very hefty book by Milne and Strachey [9] 
was published. Strachey's shockingly sudden and untimely death unfor- 
tunately prevented him from ever starting on the revision of the 
manuscript. We have lost much in style and insight (to say nothing of 
inspiration) by Strachey's passing, but Robert Milne has carried out their 
plan admirably. What is important about the book is that it pushes 
the discussion of a complex language through from the beginning to 
the end. Some may find the presentation too rigorous, but the point 
is that the semantics of the book is not mere speculation but the real 
thing. It is the product of serious and informed thought; thus, one 
has the detailed evidence to decide whether the approach is going 
to be fruitful. Milne has organized the exposition so one can grasp 
the language on many levels down to the final compiler. He has not 
tried to sidestep any difficulties. Though not lighthearted and biting, 
as Strachey often was in conversation, the book is a very fitting 

I ~!D 7 ( i  
' l u r i n g  

/ lw lu l ' ( I  

IA'( IurI" 

Logic and Programming Languages 49 



memorial to the last phase of Strachey's work, and it contains any 
number of original contributions by Milne himself. {I can say these 
things because I had no hand in writing the book myself.} 

Recently published also is the volume by Donahue [4]. This is a not 
too long and very readable work that discusses issues not covered, or 
not covered from the same point of view, by the previously mentioned 
references. Again, it was written quite independently of Strachey and 
me, and I was very glad to see its appearance. 

Soon to come out is the textbook by Joe Stoy [13]. This will comple- 
ment these other works and should be very useful for teaching, because 
Stoy has excellent experience in lecturing, both at Oxford University 
and at M.I.T. 

On the foundational side, my own revised paper {Scott [12]} will be 
out any moment in the SIAM Journal on Computing. As it was written 
from the point of view of enumeration operators in more "classical" 
recursion theory, its relevance to practical computing may not be at 
all clear at first glance. Thus I am relieved that these other references 
explain the uses of the theory in the way I intended. 

Fortunately all the above authors cite the literature extensively, and 
so I can neglect going into further historical detail today. May I only say 
that many other people have taken up various of the ideas of Strachey 
and myself, and you can find out about their work not only from these 
bibliographies but also, for example, from two recent conference pro- 
ceedings, Manes [7] and B6hm [1]. If I tried to list names here, I would 
only leave some out--those that have had contact with me know how 
much I appreciate their interest and contributions. 

S o m e  P e r s o n a l  N o t e s  
I was born in California and began my work in mathematical logic 

as an undergraduate at Berkeley in the early 1950's. The primary 
influence was, of course, Alfred Tarski together with his many 
colleagues and students at the University of California. Among many 
other things, I learned recursive function theory from Raphael and Julia 
Robinson, whom I want to thank for numerous insights. Also at the 
time through self-study I found out about the k-calculus of Curry and 
Church (which, literally, gave me nightmares at first}. Especially 
important for my later ideas was the study of Tarski's semantics and 
his definition of truth for formalized languages. These concepts are still 
being hotly debated today in the philosophy of natural language, as you 
know. I have tried to carry over the spirit of Tarski's approach to 
algorithmic languages, which at least have the advantage of being 
reasonably well formalized syntactically. Whether I have found the right 
denotations of terms as guided by the schemes of Strachey (and worked 
out by many hands} is what needs discussion. I am the first to say that 
not all problems are solved just by giving denotations to some languages. 
Languages like (the very pure} k-calculus are well served but many pro- 
gramming concepts are still not covered. 
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My graduate work was completed in Princeton in 1958 under  the 
direction of Alonzo Church, who also supervised Michael Rabin's thesis. 
Rabin and I met at that time, but it was during an IBM summer  job in 
1957 that we did our joint work on automata theory. It was hardly 
carried out in a vacuum, since many  people were working in the area; 
but  we did manage to throw some basic ideas into sharp relief. At the 
time I was certainly thinking of a project of giving a mathematical defini- 
tion of a machine. I feel now that the finite-state approach is only 
partially successful and without  much  in the way of practical implica- 
tion. True, many  physical machines can be modelled as finite-state 
devices; but the finiteness is hardly the most important  feature, and the 
automata point of view is often rather  superficial. 

Two later developments  made automata seem to me more  interest- 
ing, at least mathematically: the Chomsky hierarchy and the connec- 
tions with semigroups. From the algebraic point of view (to my taste at 
least I Eilenberg, the Euclid of automata theory, in his books [5] has said 
pret ty much  the last word. I note too that he has avoided abstract 
category theory. Categories may lead to good things {cf. Manes [711, but  
too early a use can only make things too difficult to understand.  That  
is my personal  opinion. 

In some ways the Chomsky hierarchy is in the end disappointing. 
Context-free languages are very  important  and everyone has to learn 
about them, but it is not at all clear to me what comes next - -  if anything. 
There  are so many  other families of languages, but  not much  order has 
come out of the chaos. I do not think the last word has been said here. It 
was not knowing where  to turn, and being displeased with what  I 
thought was excessive complexity, that made me give up working in 
automata theory. I tried once in a certain way to connect  automata and 
programming languages by suggesting a more systematic way of separat- 
ing the machine from the program. Eilenberg heartily disliked the idea, 
but  I was glad to see the recent  book by Clark and Cowell [2] where,  
at the suggestion of Peter Landin, the idea is carried out very  nicely. 
It is not algebra, I admit, but it seems to me to be {elementary, somewhat 
theoretical} programming. I would like to see the next step, which would 
fall somewhere  in be tween Manna [8] and Milne-Strachey [9]. 

It was at Princeton that I had my first introduction to real 
machines - - the  now almost prehistoric von Neumann  machine. I have 
to thank Forman Acton for that. Old fashioned as it seems now, it was 
still real; and Hale Trotter and I had great fun with it. How very  sad 
I was indeed to see the totally dead corpse in the Smithsonian Museum 
with no indication at all what  it was like w h en  it was alive. 

From Princeton I went  to the University of Chicago to teach in the 
Mathematics Depar tment  for two years. Though I met Bob Ashenhurst  
and Nick Metropolis at that time, my stay was too short to learn from 
them; and as usual there is always too great a distance between depart- 
ments. [Of course, since I am only writing about connections with 
computing, I am not trying to explain my other activities in mathematics 
and logic.I 
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From Chicago I went to Berkeley for three years. There I met 
many computer people through Harry Huskey and Ren~ de Vogelaere, 
the latter of whom introduced me to the details of Algol 60. There 
was, however, no Computer Science Department as such in Berkeley 
at that time. For personal reasons I decided soon to move to Stanford. 
Thus, though I taught a course in Theory of Computation at Berkeley 
for one semester, my work did not amount to anything. One thing 
I shall always regret about Berkeley and Computing is that I never 
learned the details of the work of Dick and Emma Lehmer, because 
I very much admire the way they get results in number theory by 
machine. Now that we have the Four-Color Problem solved by machine, 
we are going to see great activity in large-scale, special-purpose theorem 
proving. I am very sorry not to have any hand in it. 

Stanford had from the early 1960's one of the best Computer Science 
departments in the country, as everyone agrees. You will wonder why 
I ever left. The answer may be that my appointment was a mixed one 
between the departments of Philosophy and Mathematics. I suppose 
my personal difficulty is knowing where I should be and what I want 
to do. But personal failings aside, I had excellent contacts in Forsythe's 
remarkable department and very good relations with the graduates, 
and we had many lively courses and seminars. John McCarthy and 
Pat Suppes, and people from their groups, had much influence on 
me and my views of computing. In Logic, with my colleagues Sol 
Feferman and Georg Kreisel, we had a very active group. Among 
the many Ph.D. students in Logic, the work of Richard Platek had 
a few years later, when I saw how to use some of his ideas, much 
influence on me. 

At this point I had a year's leave in Amsterdam which proved 
unexpectedly to be a turning point in my intellectual development. 
I shall not go into detail, since the story is complicated; but the academic 
year 1968/69 was one of deep crisis for me, and it is still very painful 
for me to think back on it. As luck would have it, however, Pat Suppes 
had proposed my name for the IFIP Working Group 2.2 [now called 
Formal Description of Programming Concepts). At that time Tom Steel 
was Chairman, and it was at the Vienna meeting that I first met 
Christopher Strachey. If the violence of the arguments in this group 
is any indication, I am really glad I was not involved with anything 
important like the Algol Committee. But I suppose fighting is 
therapeutic: it brings out the best and the worst in people. And in 
any case it is good to learn to defend oneself. Among the various 
combatants I liked the style and ideas of Strachey best, though I think 
he often overstated his case; but what he said convinced me I should 
learn more. 

It was only at the end of my year in Amsterdam that I began to 
talk with Jaco de Bakker, and it was only through correspondence 
over that summer that our ideas took definite shape. The Vienna 
IBM Group that I met through WG 2.2 influenced me at this stage 
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also. In the meantime I had decided to leave Stanford for the Princeton 
Philosophy Department; but since I was in Europe with my family, 
I requested an extra term's leave so I could visit Strachey in Oxford 
in the fall of 1969. That term was one of feverish activity for me; 
indeed, for several days, I felt as though I had some kind of real brain 
fever. The collaboration with Strachey in those few weeks was one 
of the best experiences in my professional life. We were able to repeat 
it once more the next summer in Princeton, though at a different level 
of excitement. Sadly, by the time I came to Oxford permanently in 
1972, we were both so involved in teaching and administrative duties 
that real collaboration was nearly impossible. Strachey also became 
very discouraged over the continuing lack of research funds and help 
in teaching, and he essentially withdrew himself to write his book 
with Milne. (It was a great effort and I do not think it did his health 
any good; how I wish he could have seen it published.) 

Returning to 1969, what I started to do was to show Strachey that 
he was all  w r o n g  and that he ought to do things in quite another way. 
He had originally had his attention drawn to the k-calculus by Roger 
Penrose and had developed a handy style of using this notation for 
functional abstraction in explaining programming concepts. It was 
a fo rma l  device, however, and I tried to argue that it had no mathematical 
basis. I have told this story before, so to make it short, let me only 
say that in the first place I had actually convinced him by "superior 
logic" to give up the type-free X-calculus. But then, as one consequence 
of my suggestions followed the other, I began to see that computable 
functions could be defined on a great variety of spaces. The real step 
was to see that function-spaces were  good spaces, and I remember quite 
clearly tha t  the logician Andrzej Mostowski, who was also visiting 
Oxford at the time, simply did not believe that the kind of function 
spaces I defined had a constructive description. But when I saw they 
actually did, I began to suspect that the possibilities of using function 
spaces might just be more surprising than we had supposed. Once 
the doubt about the enforced rigidity of logical types that I had tried 
to push onto Strachey was there, it was not long before I had found 
one of the spaces isomorphic with its own function space, which 
provides a model of the "type-free" X-calculus. The rest of the story 
is in the literature. 

(An interesting sidelight on the X-calculus is the r61e of Alan Turing. 
He studied at Princeton with Church and connected computability 
with the (formal) X-calculus around 1936/37. Illuminating details of 
how his work (and the further influence of X-calculus) was viewed 
by Steve Kleene can be found in Crossley [3]. (Of course Turing's 
later ideas about computers very much influenced Strachey, but this 
is not the time for a complete historical analysis.) Though I never 
met Turing (he died in 1954), the second-hand connections through 
Church and Strachey and my present Oxford colleagues, Les Fox and 
Robin Gandy, are rather close, though by the time I was a graduate 
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at Princeton, Church was no longer working on the k-calculus, and we 
never discussed his experiences with Turing.) 

It is very strange that my k-calculus models were not discovered 
earlier by someone else; but I am most encouraged that new kinds 
of models with new properties are now being discovered, such as the 
"powerdomains" of Gordon Plotkin [10]. I am personally convinced 
that the field is well established, both on the theoretical and on the 
applie d side. John Reynolds and Robert Milne have independently 
introduced a new inductive method of proving equivalences, and the 
interesting work of Robin Milner on LCF and its proof techniques 
continues at Edinburgh. This direction of proving things about models 
was started off by David Park's theorem on relating the fixed-point 
operator and the so-called paradoxical combinator of k-calculus, and 
it opened up a study of the infinitary, yet computable operators which 
continues now along many lines. Another direction of work goes 
on in Novosibirsk under Yu. L. Ershov, and quite surprising connections 
with topological algebra have been pointed out to me by Karl H. 
Hofmann and his group. There is no space here even to begin to list 
the many contributors. 

In looking forward to the next few years, I am particularly happy 
to report at this meeting that Tony Hoare has recently accepted the 
Chair of Computation at Oxford, now made permanent since Strachey's 
passing. This opens up all sorts of new possibilities for collaboration, 
both with Hoare and with the many students he will attract after 
he takes up the post next year. And, as you know, the practical aspects 
of use and design of computer languages and of programming 
methodology will certainly be stressed at Oxford (as Strachey did 
too, I hasten to add), and this is all to the good; but there is also 
excellent hope for theoretical investigations. 

Some Semant ic  Structures 
Turning now to technical details, I should like to give a brief indica- 

tion of how my construction goes, and how it is open to considerable 
variation. It will not be possible to argue here that these are the "right" 
abstractions, and that is why it is a relief to have those references 
mentioned earlier so easily available. 

Perhaps the quickest indication of what I am getting at is provided 
by two domains: ~ ,  the domain of Boolean values, and ~f = ~o ,  the 
domain of infinite sequences of Boolean values. The first main point is 
that we are going to accept the idea of partial functions represented 
mathematically by giving the functions from time to time partial values. 
As far as ~ goes the idea is very trivial: we write 

= { true, false, .1. } 

where ± is an extra element called "the undefined." In order to keep 
± in its place we impose a partial ordering = on the domain ~ ,  where 

x = y i f f e i t he r x  = ± o r x  = y, 
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for all x, y ~ .  It will not mean all that much  here in ~ ,  but we can 
read "~  " as saying that the information content of x is contained 
in the information content of y. The element 3_ has, therefore, empty 
information content. The scheme is illustrated in Figure 1. 

' l o r l ng  
Award 
I,eclorc 

t rue  false 

J. 

FIGURE 1. The Boolean values. 

(An aside: in many publications I have advocated using lattices, 
which as partial orderings have a "top" element T as well as a "bottom" 
element 1, so that we can assert ± c x z T for all elements of the domain. 
This suggestion has not been well received for many reasons I cannot 
go into here. Some discussion of its reasonableness is to be found in 
Scott [12], but of course the structure studied there is special. Probably 
it is best neither to exclude or include a ± ; and, for simplicity, I shall 
not mention it further today.) 

Looking now at U ~, the domain of sequences, we shall employ 
a shorthand notation where  subscripts indicate the coordinates; thus, 

X : Xn n = O  

for all x ~2 ~f. Each term is such that xnEB,  because ~f = ~o .  
Technically, a "direct product"  of structures is intended, so we define 
c on ~f by 

x ~ y i f fxn  z Yn, for al ln.  

Intuitively, a sequence y is "better" in information than a sequence x 
iff some of the coordinates of x which were "undefined" have passed 
over into "being defined" when  we go from x to y. For example, each 
of the following sequences stands in the relation ~ to the following ones: 

<i,±,i,± .... }, 
(true, ± ,  3-, J_ . . . .  >, 
(true, false, ±, ± ,  . . .), 
(true, false, true, ± . . . .  >. 

Clearly this list could be expanded infinitely, and there is also no need 
to treat the coordinates in the strict order n = 0, 1, 2 . . . .  Thus the 
g relation on J is far more complex than the original z on ~8. 
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An obvious difference be tween ~ and ~f is that ~ is finite while 
J" has infinitely many  elements. In ~£, also, certain elements  have 
infinite information content, whereas  this is not so in ~ .  However,  we 
can employ the partial ordering in ~£ to explain abstractly what  we 
mean by "finite approximation" and "limits." The sequences listed above 
are finite in ~f because they have only finitely many coordinates distinct 
f rom ±.  Given any x E ~f we can cut it down to a finite e lement  by 
defining 

; x ,  if n < m; 
(xl m)n 

1,  if not. 

It is easy to see from our definitions that 

x ]  m c_x l ( m +  1) _Cx, 

so that the x I m are "building up" to a limit; and, in fact, that limit 
is the original x. We write this as 

x = ~ J ( x I m ) ,  
ln=O 

where  ,U is the sup or least-upper-bound operation in the partially 
ordered set ~f. The point  is that , f  has many  sups; and, wheneve r  we 
have elements  y(m) c y(~ + ~) in d ~ [regardless of whe ther  they are finite 
or not}, we can define the "limit" z, where  

o o  

z = U y('). 
I l l  = 11 

[Hint: ask yourself  what  the coordinates of z will have to be.) We 
cannot  rehash the details here, but ~f really is a topological space, and 
z really is a limit. Thus, though ~f is infinitary, there is a good chance 
that we can let manipulat ions fall back on finitary operations and be 
able to discuss computable operations on ~f and on more  complex 
domains. 

Aside from the sequence and partial-order s tructure on ~f, we can 
define many  kinds of algebraic structure. That  is why  ~f is a good 
example. For instance, up to isomorphism the space satisfies 

d ' =  d" x d', 

where  on the right-hand side the usual binary direct product  is 
intended. Abstractly, the domain d" x ~f consists of all ordered pairs 
(x ,y)  w i thx ,  y E J ,  where  we define g on d ~ × ~ f b y  

(x, y) c .(x', y') iff x c x '  and y c y' .  

But for all practical purposes  there is no harm in identifying 
(x, y) with a sequence already in ~f; indeed coordinatewise we can 
define 

I x  k, i f n  = 2k; 
(x, Y)~ = ILYk' i f n  2k + 1. 
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The above criterion for c be tween  pairs will be verified, and we can 
say that ~f has a {bi-unique) pairing function. 

The pairing function (.,.) on ~f has many  interesting properties.  
In effect we have already noted that it is monotonic (intuitively: as you 
increase the information contents  of x and y, you increase the 
information content  of (x, y). More importantly, (.,.) is continuous in 
the following precise sense: 

oo 

(x ,y)  = LI (x l m ,  y ] m), 
I t l = O  

which means that (.,.) behaves well under taking finite approximations. 
And this is only one example; the whole theory of monotone  and 
continuous functions is very  important  to this approach. 

Even with the small amount  of s tructure we have put  on ~f, 
a language suggests itself. For the sake of illustration, we concentrate  
on the two isomorphisms satisfied by U~; namely, ~f = ~ x ~f and 
~f = ~f x ~f. The first identified ~f as having to do with (infinite) 
sequences of Boolean values; while the second reminds us of the above 
discussion of the pairing function. In Figure 2 we set down a quick BNF 
definition of a language with two kinds of expressions: Boolean {the fl's) 
and sequential (the a's). 

I 9 7 6 
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e v e n  a I o d d  a I m e r g e  a'  a" 

FIGUR~ 2. A brief language. 

This language is very  brief  indeed: no variables, no declarations, 
no assignments, only a miniature selection of constant terms. Note 
that the notation chosen was meant  to make the meanings of these 
expressions obvious. Thus, if a denotes a sequence x, then  h e a d  a has 
got to denote the first t e rm x0 of the sequence x. As Xo E ~ and x E U ~, 
we are keeping our  types straight. 

More precisely, for each expression we can define its (constant) 
value ~ .  ~ ; so that ~ fl ] E ~ for Boolean expressions /3, and 

a" ~ E U ~ for sequential  expressions. Since there are ten clauses in 
the BNF language definition, we would have to set down ten equations 
to completely specify the semantics of this example; we shall content  
ourselves with selected equations here. To carry on with the remark  
in the last paragraph: 

h e a d  a ~  = ~ a ~ o .  

On the other  side, the expression/3" creates an infinite sequence of 
Boolean values: 

E f t ]  . . . .  >. 
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= 

while we have 

t a i l  a 

Further  along: 

even  a ]] 

and 

(This notation, though rough, is clear.) In the same vein: 

These should be enough to give the idea. It should also be clear that 
what  we have is really only a selection, because ~f satisfies many  more 
isomorphisms (e.g., ~f = ~f x ~f x ~f),  and there are many, many  
more  ways of tearing apart and recombining sequences of Boolean 
va lues - -a l l  in quite computable  ways. 

T h e  F u n c t i o n  S p a c e  
It should not be concluded that the previous section contains the 

whole of my idea: this would leave us on the e lementary  level of 
program schemes (e.g., van Emden-Kowalski  [6] or Manna [8] (last 
chapter}). What some people call "Fixpoint Semantics" (I myself  do not 
like the abbreviated word "fixpoint") is only a first chapter. The second 
chapter  a l ready includes p rocedures  that take p rocedures  as 
arguments -- higher type procedures -- and we are well beyond program 
schemes. True, fixed-point techniques  can be applied to these higher- 
type procedures,  but that is not the only thing to say in their  favor. The 
semantic s t ructure needed to make this definite is the function space. 
I have tried to stress this f rom the start in 1969, but  many  people have 
not unders tood me well enough. 

Suppose ~ '  and ~ "  are two domains of the kind we have been 
discussing (say, ~ or ~ x ~ or ~for something worse). By [ ~ ' ~  ~" ]  
let us understand the domain of all monotone and continuous functions 
f m a p p i n g  ~ '  into ~". This is what  I mean  by a function space. It is not 
all that difficult mathematically, but it is not all that obvious either that 
[ ~'--~ ~" ]  is again a domain  "of the same kind," though admit tedly of  
a more  complicated structure. I cannot  prove it here, but  at least I can 
define the c_ relation on the function space: 

f c g i f f f ( x )  c_g(x) for a l l x E  ~ :  

Treating functions as abstract objects is nothing new; what  has to be 
checked is that they are also quite reasonable objects of computation. 
The relation [] on [ ~ ' ~  ~" ]  is the first step in checking this, and it 
leads to a well-behaved notion of a finite approximation to a function. 
(Sorry! there is no time to be more  precise here.) And when  that is seen, 
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the way is open to iteration of function spaces; as in [[ ~0'~ ~ " ] ~  ~ " ] .  
This is not as crazy as it might seem at first, since our  theory  identifies 
f(x) as a computable  binary function of variable l a n d  variable x. Thus, 
as an operation, it can be seen as an element of a funct ion space: 

[[[ ~ ' ~ , , ]  x ~ , ] ~ " ] .  

This is only the start of a theory of these operators {or combinators, as 
Curry  and Church call them}. 

Swallowing all this, let us at tempt an infinite iteration of function 
spaces beginning with ~f. We define ,~o -- ~f and ~Y~ + ~ = [ ~ ~ ~f ]. 
Thus 57~ = [~f ~ ~f] and 

= [ [ [ [~  --,. ~ ] - , .  ~ ] - ,  ~ ] .  

You just have to believe me that this is all highly constructive {because 
we employ only the continuous functionsl. 

It is fairly clear that there is a natural  sense in which this is 
cumulative. In the first place ~f is "contained in" [ ~f -~ ~f] as a subspace: 
identify each x E ~f with the corresponding constant function in 
[d" ~ ~f ]. Clearly by our definitions this is an order-preserving cor- 
respondence.  Also each f ~ [ G" ~ ~f ] is [crudely} approximated by a 
constant, n a m e l y f ( l )  {this is the "best" e lement  g all the valuesf(x)  I. 
This relationship of 'subspace and approximation oetween spaces will 
be denoted by ~f <~ [ d" ~ ~f ]. 

Pushing higher we can say 

[~f ~ ~f] <~ [ [ ~  ~ ~ ]  ~ ~f], 

but now for a different reason. Once we fix the reason why  d" <~ 
[ J  ~ ~f ], we have to respect the funct ion space structure of the 
higher 5~. In the special case, suppose f ~ [~f ~ ~f ]. We want to in- 
ject f i n t o  the next space, so call it i ( f )  ~ [ ~ f  ~ ~f] ~ ~f. If g is any 
e lement  in [ ~f ~ d" ] we are being required to define i ( f )  (g) ~ d.. 
Now, since g ~.[ J ~ ~f ], we have the original projection backwards 
j (g) = g ( l )  ~ ~f. So, as this is the best approximation to g we can get 
in ~f, we are stuck with defining 

i ( f )  (g) = f ( j (g ) ) .  

This gives the next map i: g l  ~ ~7"2. To define the corresponding 
projection j: J'2 ~ 5-1, we argue in a similar way and define 

j(4~) (x) = ch(i(x)), 

where  we have • ~ [ ~f ~ ~f ] ~ ~f, and i (x) E [ d" ~ , f  ] is the constant 
function with value x. With this progression in mind there is no 
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trouble in using an exactly similar plan in defining i: 3-2 ~ ~z-3 and 
j: ,-~'3 -+ 3"2. And so on, giving the exact sense to the cumulation: 

3-o <~ ,-~'l <1 ,~'2"q • • • <~ 3 . . 4  ~-n+l<J . . . .  

Having all this, it would be a pity not to pass to the limit (this t ime 
with spaces), and this is just what  I want you to accept. What is obtain- 
ed by decreeing that there is a space 

g .  = lim ~rn? 
n ~ o o  

Since the separate stages interact thus: 

3 . + ,  = [ J-o - . . f  1, 

it is not so queer  to guess that 

holds (at least up to i somorphism I. It does, but  I can only indicate 
the bare bones of the reason (and reasonablenessl of this isomorphism. 
In the first place the separate spaces 5 r  have been placed one inside 
another, which not only makes a tower of spaces but  also respects 
the combinat ion f ( x )  as an algebraic operat ion of two variables, g-o~ 
in a precise sense is the complet ion of the union of the ~'n ; that is 
within these spaces we can think of towers of functions each approx- 
imating the next (by the use of the i and j mappingsl, so that in ~7-0o 
these towers are given limits. If the towers are truncated,  then we can 
argue that each space ~-, <J 3"00. 

Now why  the isomorphism of ~-oo? Take a funct ion (continuous! 1 
in [ g o o ~ , f  ]. By its very  continuity it will be de termined  by what  
it does to the finite levels J-n. That is, it will have better  and better  
approximations in [ 3-, ~ ~f] = 3,+~; thus, the approximations "live" 
in the finite levels of 3-o0 • Their  limit ought to just give us back the 
funct ion [ 2;z'~ ~ J ]  we started with. In the same way any element  in 
g ~  can be regarded as a limit of approximate functions in the spaces 
[ 3 , ~  ~f ]. Admittedly there are details to check; but, in the limit, 
there is no real difference be tween ,_~-~ and [ goo--,~£ ]: the infinite 
level of higher type functions is its own funct ion space. {As always: this 
is a consequence of continuity. I 

Much structure is lurking under  the surface here; in fact more 
than I thought  at first. In Figure 3, I illustrate a chain of isomorphisms 
that shows that ~Z-gets much  of the character  of ~f with which we 
are already familiar. The reasons why  these are valid are as follows. 
First, we treat ~-~ as a funct ion space. Now pairs of functions can 
be isomorphical ly put  into correspondence with functions taking on 
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pairs of values. But ~f x d "  = d '  as we already know. The final step just 
puts functions on 5v-oo back to elements of 5too. 

= [ ~  ~ , f ]  x [ 3 %  ~ a ' ]  
= [ ,-¢L ~ d " x  d-'] 
= [ J-~ + d ' ]  

= ,..~-oo 

FIGURE 3. The first chain of isomorphisms. 

Using the isomorphsim of Figure 3, we can gain the fur ther  result 
illustrated in Figure 4. The reasons are fairly clear. Take a function from 
J-oo to ~roo. The values of this function can be construed as functions. 

[ [ 3 - .  x ~ . ]  ~ ~f] 

[ 3-oo~ d ' ]  

FIGURE 4. The second chain of isomorphisms. 

But consider that a funct ion whose values are functions is just (up to 
isomorphism of spaces) a function of two arguments. As we have seen 
in Figure 3, ~7-oo x ~7-~ = 5z'o~, so we obtain the final simplification [up 
to isomorphism). 

What  we have done is to sketch why  J ' ~ ,  the space of functions 
of infinite type, is a model of the X-calculus. The X-calculus is a language 
[not illustrated betel,  where  every term can be regarded as denoting 
both an argument  (or value) and a funct ion at the same time. The 
formal details are pret ty  simple, but  the semantical details are what  we 
have been looking at: every  element  of the space 5~-~o can be taken 
at the same time as being an element  of the space [ 5rod ~ 5z-~ ]; thus, 
• ~-o~ provides a model, but  it is just one of many. 

Without  being able to be explicit, a denotational  (or mathematical  I 
semantics was outlined for a pure language of procedures  (also pairs 
and all the other  stuff in Figure 2}. In the references cited on real 
programming languages, all the other features (of assignments, 
sequencing, declarations, etc., etc. I are added. What has been established 
in these references is that the method of semantical definition does in 
fact work. I hope you will look into it. 
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