
Computer Programming
as an Art
D O N A L D E. K N U T H

[The Turing Award citation read by Bernard A. Galler, chairman of the 1974
1bring Award Committee, on the presentation of this lecture on November
11 at the ACM Annual Conference in San Diego.]

The A. M. 1hring Award of the ACM is presented annually by the ACM
to an individual selected for his contributions of a technical nature made
to the computing community. In particular, these contributions should have
had significant influence on a major segment of the computer field.

"The 1974 A. M. Turing Award is presented to Professor Donald E. Knuth
of Stanford University for a number of major contributions to the analysis
of algorithms and the design of programming languages, and in particular
for his most significant contributions to the 'art of computer program-
ming' through his series of well-known books. The collections of techniques,
algorithms, and relevant theory in these books have served as a focal point
for developing curricula and as an organizing influence on computer science."

Such a formal statement cannot put into proper perspective the role
which Don Knuth has been playing in computer science, and in the com-
puter industry as a whole. It has been my experience with respect to the
first recipient of the 1bring Award, Professor Alan J. Perlis, that at every
meeting in which he participates he manages to provide the insight into
the problems being discussed that becomes the focal point of discussion for

Author's present address: Fletcher Jones Professor of Computer Science, Stanford
University, Stanford CA 94305.

33

the rest of the meeting. In a very similar way, the vocabulary, the examples,
the algorithms and the insight that Don Knuth has provided in his excellent
collection of books and papers have begun to find their way into a great
many discussions in almost every area of the field. This does not happen
easily. As every author knows, even a single volume requires a great deal
of careful organization and hard work. All the more must we appreciate
the clear view and the patience and energy which Knuth must have had
to plan seven volumes and to set about implementing his plan so carefully
and thoroughly.

It is significant that this award and the others that he has been receiving
are being given to him after three volumes of his work have been published.
We are clearly ready to signal to everyone our appreciation of Don Knuth
for his dedication and his contributions to our discipline. I am very pleased
to have chaired the Committee that has chosen Don Knuth to receive the
1974 A. M. TUring Award of the ACM.

When Communications of the ACM began publication in 1959, the
members of ACM's Editorial Board made the following remark as they
described the purposes of ACM's periodicals [2]: "If computer program-
ming is to become an important part of computer research and develop-
ment, a transition of programming from an art to a disciplined science
must be effected." Such a goal has been a continually recurr ing theme
during the ensuing years; for example, we read in 1970 of the "first
steps toward transforming the art of programming into a science" [26].
Meanwhile we have actually succeeded in making our discipline a
science, and in a remarkably simple way: mere ly by deciding to call
it "computer science."

Implicit in these remarks is the notion that there is something
undesirable about an area of human activity that is classified as an
"art"; it has to be a Science before it has any real stature. On the
other hand, I have been working for more than 12 years on a series
of books called "The Art of Computer Programming." People frequently
ask me why I picked such a title; and in fact some people apparent ly
don't believe that I really did so, since I 've seen at least one biblio-
graphic reference to some books called "The Act of Computer Pro-
gramming."

In this talk I shall try to explain why I think '~ r t " is the appropriate
word. I will discuss what it means for something to be an art, in contrast
to being a science; I will t ry to examine whe ther arts are good things
or bad things; and I will t ry to show that a proper viewpoint of the sub-
ject will help us all to improve the quality of what we are now doing.

One of the first t imes I was ever asked about the title of my books
was in 1966, during the last previous ACM national meeting held in
Southern California. This was before any of the books were published,
and I recall having lunch with a friend at the convent ion hotel. He
knew how conceited I was, already at that time, so he asked if I was

34 DONALD E. KNUTH

going to call my books "An Introduction to Don Knuth." I replied that,
on the contrary, I was naming the books after him. His name: Art Evans.
(The Art of Computer Programming, in person.}

From this story we can conclude that the word "art" has more
than one meaning. In fact, one of the nicest things about the word
is that it is used in many different senses, each of which is quite
appropriate in connection with computer programming. While pre-
paring this talk, I went to the library to find out what people have
written about the word "art" through the years; and after spending
several fascinating days in the stacks, I came to the conclusion that
"art" must be one of the most interesting words in the English language.

I 9 7 - 1

' l u m i n g

A W ~ H (I

I,e~['i i i ill •

The Arts of Old
If we go back to Latin roots, we find ars, artis meaning "skill." It

is perhaps significant that the corresponding Greek word was r~Xp~,
the root of both "technology" and "technique."

Nowadays when someone speaks of "art" you probably think first
of "fine arts" such as painting and sculpture, but before the twentieth
century the word was generally used in quite a different sense. Since
this older meaning of "art" still survives in many idioms, especially
when we are contrasting art with science, I would like to spend the
next few minutes talking about art in its classical sense.

In medieval times, the first universities were established to teach
the seven so-called "liberal arts," namely grammar, rhetoric, logic,
arithmetic, geometry, music, and astronomy. Note that this is quite
different from the curriculum of today's liberal arts colleges, and that
at least three of the original seven liberal arts are important components
of computer science. At that time, an "art" meant something devised
by man's intellect, as opposed to activities derived from nature or
instinct; "liberal" arts were liberated or free, in contrast to manual arts
such as plowing (ef. [6]}. During the middle ages the word "art" by itself
usually meant logic [4], which usually meant the study of syllogisms.

S c i e n c e vs. Art
The word "science" seems to have been used for many years in

about the same sense as "art"; for example, people spoke also of the
seven liberal sciences, which were the same as the seven liberal arts
[1]. Duns Scotus in the thir teenth century called logic "the Science of
Sciences, and the Art of Arts" (cf. [12, p. 34f]). As civilization and
learning developed, the words took on more and more independent
meanings, "science" being used to stand for knowledge, and "art" for
the application of knowledge. Thus, the science of astronomy was
the basis for the art of navigation. The situation was almost exactly
like the way in which we now distinguish between "science" and
"engineering."

Computer Programming as an Art 35

Many authors wrote about the relationship between art and science
in the nineteenth century, and I believe the best discussion was given
by John Stuart Mill. He said the following things, among others, in
1843 [28]:

Several sciences are often necessary to form the groundwork of a single art.
Such is the complication of human affairs, that to enable one thing to be done,
it is often requisite to know the nature and propert ies of many things Art in
general consists of the truths of Science, arranged in the most convenient order
for practice, instead of the order which is the most convenient for thought. Science
groups and arranges its truths so as to enable us to take in at one view as much
as possible of the general order of the universe. Art . . .brings together from parts
of the field of science most remote from one another, the truths relating to the
production of the different and heterogeneous conditions necessary to each effect
which the exigencies of practical life require.

As I was looking up these things about the meanings of "art," I found
that authors have been calling for a transition from art to science for
at least two centuries. For example, the preface to a textbook on
mineralogy, wri t ten in 1784, said the following [17]: "Previous to the
year 1780, mineralogy, though tolerably unders tood by many as an Art,
could scarce be deemed a Science."

According to most dictionaries "science" means knowledge that
has been logically arranged and systematized in the form of general
"laws." The advantage of science is that it saves us f rom the need to
think things through in each individual case; we can turn our thoughts
to higher-level concepts. As John Ruskin wrote in 1853 [32]: "The work
of science is to substitute facts for appearances, and demonstrat ions
for impressions."

It seems to me that if the authors I studied were writing today, they
would agree with the following characterization: Science is knowledge
which we unders tand so well that we can teach it to a computer; and
if we don't fully unders tand something, it is an art to deal with it. Since
the notion of an algorithm or a computer program provides us with
an extremely useful test for the depth of our knowledge about any given
subject, the process of going from an art to a science means that we
learn how to automate something.

Artificial intelligence has been making significant progress, yet there
is a huge gap between what computers can do in the foreseeable future
and what ordinary people can do. The myster ious insights that people
have when speaking, listening, creating, and even w h en they are
programming, are still beyond the reach of science; near ly everything
we do is still an art.

From this standpoint it is certainly desirable to make computer
programming a science, and we have indeed come a long way in the
15 years since the publication of the remarks I quoted at the beginning
of this talk. Fifteen years ago computer programming was so badly
unders tood that hardly anyone even thought about proving programs
correct; we just fiddled with a program until we "knew" it worked.
At that t ime we didn't even know how to express the concept that a

36 DONALD E. KNUTH

program was correct, in any rigorous waY. It is only in recent years that
we have been learning about the processes of abstraction by which
programs are written and understood; and this new knowledge about
programming is currently producing great payoffs in practice, even
though few programs are actually proved correct with complete rigor,
since we are beginning to understand the principles of program struc-
ture. The point is that when we write programs today, we know that
we could in principle construct formal proofs of their correctness if
we really wanted to, now that we understand how such proofs are
formulated. This scientific basis is resulting in programs that are
significantly more reliable than those we wrote in former days when
intuition was the only basis of correctness.

The field of "automatic programming" is one of the major areas of
artificial intelligence research today. Its proponents would love to be
able to give a lecture entitled "Computer Programming as an Artifact"
(meaning that programming has become merely a relic of bygone days),
because their aim is to create machines that write programs better than
we can, given only the problem specification. Personally I don't think
such a goal will ever be completely attained, but I do think that their
research is extremely important, because everything we learn about
programming helps us to improve our own artistry. In this sense we
should continually be striving to transform every art into a science: in
the process, we advance the art.

I can't resist telling another story relating science and art. Several
years ago when I visited the University of Chicago, I noticed two signs
as I entered one of the buildings. One of them said "Information
Science," and it had an arrow pointing to the right; the other Said
"Information," and its arrow pointed to the left. In other words, it was
one way for the Science, but the other way for the Art of Information.

Science and Art
Our discussion indicates that computer programming is by now both

a science and an art, and that the two aspects nicely complement each
other. Apparently most authors who examine such a question come to
this same conclusion, that their subject is both a science and an art,
whatever their subject is (cf. [25]). I found a book about elementary
photography, written in 1893, which stated that "the development of
the photographic image is both an art and a science" [13]. In fact, when
I first picked up a dictionary in order to study the words "art" and
"science," I happened to glance at the editor's preface, which began
by saying, "The making of a dictionary is both a science and an art."
The editor of Funk & Wagnall's dictionary [27] observed that the
painstaking accumulation and classification of data about words has
a scientific character, while a well-chosen phrasing of definitions
demands the ability to write with economy and precision: "The science
without the art is likely to be ineffective; the art without the science
is certain to be inaccurate."

J~w~rd
I , L ' ¢ ' I u r t"

Compute r P rog ramming as an Art 37

When preparing this talk I looked through the card catalog at Stan-
ford library to see how other people have been using the words "art"
and "science" in the titles of their books. This turned out to be quite
interesting.

For example, I found two books entitled The Art off Playing the
Piano [5, 15], and others called The Science offPianofforte Technique [10],
The Science offPianofforte Practice [30]. There is also a book called The
Art off Piano Playing: A Scienti~'c Approach [22].

Then I found a nice little book entitled The Gentle Art of Mathematics
[31], which made me somewhat sad that I can't honestly describe
computer programming as a "gentle art."

I had known for several years about a book called The Art of
Computation, published in San Francisco, 1879, by a man named
C. Frusher Howard [14]. This was a book on practical business
arithmetic that had sold over 400,000 copies in various editions by
1890. I was amused to read the preface, since it shows that Howard's
philosophy and the intent of his title were quite different from mine;
he wrote: "A knowledge of the Science of Number is of minor impor-
tance; skill in the Art of Reckoning is absolutely indispensible."

Several books mention both science and art in their titles, notably
The Science of Being and Art of Living by Maharishi Mahesh Yogi [24].
There is also a book called The Art of Scientific Discovery [11], which
analyzes how some of the great discoveries of science were made.

So much for the word "art" in its classical meaning. Actually when
I chose the title of my books, I wasn't thinking primarily of art in this
sense, I was thinking more of its current connotations. Probably the
most interesting book which turned up in my search was a fairly recent
work by Robert E. Mueller called The Science of Art [29]. Of all the books
I've mentioned~ Mueller's comes closest to expressing what I want to
make the central theme of my talk today, in terms of real artistry as
we now understand the term. He observes: "It was once thought that
the imaginative outlook of the artist was death for the scientist. And
the logic of science seemed to spell doom to all possible artistic flights
of fancy:' He goes on to explore the advantages which actually do result
from a synthesis of science and art.

A scientific approach is generally characterized by the words
logical, systematic, impersonal, calm, rational, while an artistic approach
is characterized by the words aesthetic, creative, humanitarian, anxious,
irrational. It seems to me that both of these apparently contradictory
approaches have great value with respect to computer programming.

Emma Lehmer wrote in 1956 that she had found coding to be "an
exacting science as well as an intriguing art" [23]. H. S. M. Coxeter
remarked in 1957 that he sometimes felt "more like an artist than a
scientist" [7]. This was at the time C. P. Snow was beginning to voice
his alarm at the growing polarization between "two cultures"
of educated people [34, 35]. He pointed out that we need to combine
scientific and artistic values if we are to make real progress.

38 DONALD E. KNUTH

Works of Art
When I 'm sitting in an audience listening to a long lecture, my

at tention usually starts to wane at about this point in the hour. So I
wonder, are you getting a little tired of my harangue about "science"
and "art"? I really hope that you'll be able to listen carefully to the rest
of this, anyway, because now comes the part about which I feel most
deeply.

When I speak about computer programming as an art, I am think-
ing primarily of it as an art form, in an aesthetic sense. The chief
goal of my work as educator and author is to help people learn how
to write beautiful programs. It is for this reason I was especially pleased
to learn recent ly [33] that my books actually appear in the Fine Arts
Library at Cornell University. (However, the three volumes apparently
sit there neatly on the shelf, wi thout being used, so I 'm afraid the
librarians may have made a mistake by interpret ing my title literally.}

My feeling is that when we prepare a program, it can be like
composing poetry or music; as Andrei Ershov has said [9], programming
can give us both intellectual and emotional satisfaction, because it is
a real achievement to master complexity and to establish a system of
consistent rules.

Fur thermore when we read other people's programs, we can
recognize some of them as genuine works of art. I can still r emember
the great thrill it was for me to read the listing of Stan Poley's SOAP II
assembly program in 1958; you probably think I 'm crazy, and styles
have certainly changed greatly since then, but at the t ime it meant
a great deal to me to see how elegant a system program could be,
especially by comparison with the heavy-handed coding found in other
listings I had been studying at the same time. The possibility of writing
beautiful programs, even in assembly language, is what got me hooked
on programming in the first place.

Some programs are elegant, some are exquisite, some are sparkling.
My claim is that it is possible to write grand programs, noble programs,
t ruly magnifi'cent ones[

I discussed this recent ly with Michael Fischer, who suggested that
computer programmers should begin to sell their original programs, as
works of art, to collectors. The ACM could set up a panel to certify the
authentici ty of each genuinely new piece of code; then discriminating
dealers and a new class of professionals called program critics would
establish appropriate market values. This would be a nice way to raise
our salaries if we could get it started.

I 9 7 4
' lu r ing
Awaed
I U(l U l I U

Taste and Style
In a more serious vein, I 'm glad that the idea of style in program-

ming is now coming to the forefront at last, and I hope that most of
you have seen the excellent little book on E!emdnts of Programming Style
by Kernighan and Plauger [16]. In this connect ion it is most important
for us all to r emember that there is no one "best" style; everybody has

C o m p u t e r P r o g r a m m i n g as a n A r t 39

his own preferences, and it is a mistake to try to force people into an
unnatural mold. We often hear the saying, "I don't know anything about
art, but I know what I like." The important thing is that you really like
the style you are using; it should be the best way you prefer to express
yourself.

Edsger Dijkstra stressed this point in the preface to his Short Intro-
duction to the Art of Programming [8]:

It is my purpose to t ransmit the importance of good taste and style in pro-
gramming, [but] the specific e lements of style presented serve only to illustrate
what benefits can be derived from "style" in general. In this respect I feel akin
to the teacher of composition at a conservatory: He does not teach his pupils how
to compose a particular symphony, he must help his pupils to find their own style
and must explain to them what is implied by this. {It has been this analogy that
made me talk about "The Art of Programming." I

Now we must ask ourselves, What is good style, and what is bad
style? We should not be too rigid about this in judging other people's
work. The early nineteenth-century philosopher Jeremy Bentham put
it this way [3, Bk. 3, Ch. 1]:

Judges of elegance and taste consider themselves as benefactors to the human
race, whilst they are really only the interrupters of their pleasure There is no
taste which deserves the epithet good, unless it be the taste for such employments
which, to the pleasure actually produced by them, conjoin some contingent or
future utility: there is no taste which deserves to be characterized as bad, unless
it be a taste for some occupation which has a mischievous tendency.

When we apply our own prejudices to "reform" someone else's taste,
we may be unconsciously denying him some entirely legitimate
pleasure. That 's why I don't condemn a lot of things programmers do,
even though I would never enjoy doing them myself. The important
thing is that they are creating something they feel is beautiful.

In the passage I just quoted, Bentham does give us some advice about
certain principles of aesthetics which are better than others, namely
the "utility" of the result. We have some freedom in setting up our
personal standards of beauty, but it is especially nice when the things
we regard as beautiful are also regarded by other people as useful. I
must confess that I really enjoy writing computer programs; and I
especially enjoy writing programs which do the greatest good, in some
sense.

There are many senses in which a program can be "good," of course.
In the first place, it's especially good to have a program that works
correctly. Secondly it is often good to have a program that won't be hard
to change, when the time for adaptation arises. Both of these goals are
achieved when the program is easily readable and understandable to
a person who knows the appropriate language.

Another important way for a production program to be good is for
it to interact gracefully with its users, especially when recovering from
human errors in the input data. It's a real art to compose meaningful
error messages or to design flexible input formats which are not
error-prone.

40 DONALD E. KNUTH

Another important aspect of program quality is the efficiency with
which the computer's resources are actually being used. I am sorry to
say that many people nowadays are condemning program efficiency,
telling us that it is in bad taste. The reason for this is that we are now
experiencing a reaction from the time when efficiency was the only
reputable criterion of goodness, and programmers in the past have
tended to be so preoccupied with efficiency that they have produced
needlessly complicated code; the result of this unnecessary complexity
has been that net efficiency has gone down, due to difficulties of
debugging and maintenance.

The real problem is that programmers have spent far too much
time worrying about efficiency in the wrong places and at the wrong
times; premature optimization is the root of all evil {or at least most
of it) in programming.

We shouldn't be penny wise and pound foolish, nor should we
always think of efficiency in terms of so many percent gained or lost
in total running time or space. When we buy a car, many of us are
almost oblivious to a difference of $50 or $100 in its price, while we
might make a special trip to a particular store in order to buy a 50¢ item
for only 25¢. My point is that there is a time and place for efficiency;
I have discussed its proper role in my paper on structured program-
ming, which appears in the current issue of Computing Surveys [21].

I 9 7 4
'1 , , r i , l g
A w ~ , , d
J , t ' (' l I I I ' l '

Less Facilities: More Enjoyment
One rather curious thing I've noticed about aesthetic satisfaction

is that our pleasure is significantly enhanced when we accomplish
something with limited tools. For example, the program of which I
personally am most pleased and proud is a compiler I once wrote for
a primitive minicomputer which had only 4096 words of memory, 16
bits per word. It makes a person feel like a real virtuoso to achieve
something under such severe restrictions.

A similar phenomenon occurs in many other contexts. For example,
people often seem to fall in love with their Volkswagens but rarely with
their Lincoln Continentals (which presumably run much better). When
I learned programming, it was a popular pastime to do as much as
possible with programs that fit on only a single punched card. I suppose
it's this same phenomenon that makes APL enthusiasts relish their "one-
liners." When we teach programming nowadays, it is a curious fact that
we rarely capture the heart of a student for computer science until he
has taken a course which allows "hands on" experience with a minicom-
puter. The use of our large-scale machines with their fancy operating
systems and languages doesn't really seem to engender any love for
programming, at least not at first.

It's not obvious how to apply this principle to increase programmers'
enjoyment of their work. Surely programmers would groan if their
manager suddenly announced that the new machine will have only half

Computer Programming as an Art 41

as much memory as the old. And I don't think anybody, even the most
dedicated "programming artists," can be expected to welcome such a
prospect, since nobody likes to lose facilities unnecessarily. Another
example may help to clarify the situation: Film-makers strongly resisted
the introduction of talking pictures in the 1920's because they were
justly proud of the way they could convey words without sound.
Similarly, a true programming artist might well resent the introduction
of more powerful equipment; today's mass storage devices tend to spoil
much of the beauty of our old tape sorting methods. But today's film-
makers don't want to go back to silent films, not because they ' re lazy
but because they know it is quite possible to make beautiful movies
using the improved technology. The form of their art has changed, but
there is still p lenty of room for artistry.

How did they develop their skill? The best film-makers through the
years usually seem to have learned their art in comparat ively primitive
circumstances, often in other countries with a limited movie industry.
And in recent years the most important things we have been learning
about programming seem to have originated with people who did not
have access to very large computers . The moral of this story, it seems
to me, is that we should make use of the idea of limited resources
in our own education. We can all benefi t by doing occasional " toy"
programs, when artificial restrictions are set up, so that we are forced
to push our abilities to the limit. We shouldn't live in the lap of luxury
all the time, since that tends to make us lethargic. The art of tackling
miniproblems with all our energy will sharpen our talents for the real
problems, and the experience will help us to get more pleasure f rom
our accomplishments on less restricted equipment .

In a similar vein, we shouldn't shy away f rom "art for art 's sake";
we shouldn't feel guilty about programs that are just for fun. I once
got a great kick out of writing a one-statement ALGOL program that
invoked an innerproduct procedure in such an unusual way that it
calculated the ruth prime number, instead of an innerproduct [19]. Some
years ago the students at Stanford were excited about finding the
shortest FORTRAN program which prints itself out, in the sense that the
program's output is identical to its own source text. The same problem
was considered for many other languages. I don't think it was a waste
of t ime for them to work on this; nor would Jeremy Bentham, w h o m
I quoted earlier, deny the "util i ty" of such pastimes [3, Bk. 3, Ch. 1].
"On the contrary," he wrote, " there is nothing, the utility of which is
more incontestable. To what shall the character of utility be ascribed,
if not to that which is a source of pleasure?"

Providing Beautiful Tools
Another characteristic of modern art is its emphasis on creativity.

It seems that many artists these days couldn't care less about creating
beautiful things; only the novelty of an idea is important. I 'm not
recommending that computer programming should be like modern

42 DONALD E. KNUTH

art in this sense, but it does lead me to an observation that I think
is important. Sometimes we are assigned to a programming task which
is almost hopelessly dull, giving us no outlet whatsoever for any creati-
vity; and at such times a person might well come to me and say, "So
programming is beautiful? It's all very well for you to declaim that
I should take pleasure in creating elegant and charming programs,
but how am I supposed to make this mess into a work of art?"

Well, it's true, not all programming tasks are going to be fun. Con-
sider the "trapped housewife," who has to clean off the same table every
day: there's not room for creativity or artistry in every situation. But
even in such cases, there is a way to make a big improvement: it is still
a pleasure to do routine jobs if we have beautiful things to work with.
For example, a person will really enjoy wiping off the dining room table,
day after day, if it is a beautifully designed table made from some fine
quality hardwood.

Sometimes we're called upon to perform a symphony, instead of to
compose; and it's a pleasure to perform a really fine piece of music,
although we are suppressing our f reedom to the dictates of the com-
poser. Sometimes a p rogrammer is called upon to be more a craftsman
than an artist; and a craftman's work is quite enjoyable when he has
good tools and materials to work with.

Therefore I want to address my closing remarks to the system
programmers and the machine designers who produce the systems that
the rest of us must work with. Please, give us tools that are a pleasure
to use, especially for our routine assignments, instead of providing
something we have to fight with. Please, give us tools that encourage
us to write better programs, by enhancing our pleasure when we do so.

It's very hard for me to convince college freshmen that programming
is beautiful, when the first thing I have to tell them is how to punch
"slash slash JOB equals so-and-so." Even job control languages can
be designed so that they are a pleasure to use, instead of being strictly
functional.

Computer hardware designers can make their machines much more
pleasant to use, for example, by providing floating-point arithmetic
which satisfies simple mathematical laws. The facilities presently
available on most machines make the job of rigorous error analysis
hopelessly difficult, but properly designed operations would encourage
numerical analysts to provide bet ter subroutines which have certified
accuracy (cf. [20, p. 204]).

Let's consider also what software designers can do. One of the best
ways to keep up the spirits of a system user is to provide routines that
he can interact with. We shouldn't make systems too automatic, so
that the action always goes on behind the scenes; we ought to give
the programmer-user a chance to direct his creativity into useful
channels. One thing all programmers have in common is that they
enjoy working with machines; so let's keep them in the loop. Some
tasks are best done by machine, while others are best done by human

1 9 7 4
' l u r i n g
AwaHI
I , t , t ' I i l i ' t ~

Computer Programming as an Art 43

insight; and a properly designed system will find the right balance.
(I have been trying to avoid misdirected automation for many years,
cf. [181.)

Program measurement tools make a good case in point. For years
programmers have been unaware of how the real costs of computing
are distributed in their programs. Experience indicates that nearly
everybody has the wrong idea about the real bottlenecks in his pro-
grams; it is no wonder that attempts at efficiency go awry so often, when
a programmer is never given a breakdown of costs according to the lines
of code he has written. His job is something like that of a newly mar-
ried couple who try to plan a balanced budget without knowing how
much the individual items like food, shelter, and clothing will cost. All
that we have been giving programmers is an optimizing compiler, which
mysteriously does something to the programs it translates but which
never explains what it does. Fortunately we are now finally seeing
the appearance of systems which give the user credit for some
intelligence; they automatically provide instrumentation of programs
and appropriate feedback about the real costs. These experimental
systems have been a huge success, because they produce measurable
improvements, and especially because they are fun to use, so I am
confident that it is only a matter of time before the use of such systems
is standard operating procedure. My paper in Computing Surveys [21]
discusses this further, and presents some ideas for other ways in which
an appropriate interactive routine can enhance the satisfaction of user
programmers.

Language designers also have an obligation to provide languages
that encourage good style, since we all know that style is strongly
influenced by the language in which it is expressed. The present surge
of interest in structured programming has revealed that none of our
existing languages is really ideal for dealing with program and data
structure, nor is it clear what an ideal language should be. Therefore
I look forward to many careful experiments in language design during
the next few years.

Summary
To summarize: We have seen that computer programming is an art,

because it applies accumulated knowledge to the world, because it
requires skill and ingenuity, and especially because it produces objects
of beauty. A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it better. Therefore we can be glad
that people who lecture at computer conferences speak about the state
of the Art.

Note: The second paragraph on page 5 {"I can't resist") , the fifth pa ragraph on
page 7 (' I d i scussed this recent ly "), and the first pa ragraph on page 11 ("Somet imes
we're called upon ") were included in the lecture given in San Diego, but were added
too late to appear in the originally publ i shed version.

44 DONALD E. KNUTH

References
1. Bailey, Nathan. The Universal Etymological English Dictionar3z T. Cos,

London, 1727. See "Art," "Liberal," and "Science."
2. Bauer, Walter F., Juncosa, Mario L., and Perlis, Alan J. ACM publication

policies and plans. J. ACM 6 (Apr. 19591, 121-122.
3. Bentham, Jeremy. The Rationale of Reward. Trans. from Th~orie des

peines et des rdcompenses, 1811, by Richard Smith, J. & H. L. Hunt,
London, 1825.

4. The Century Dictionary and Cyclopedia 1. The Century Co., New York,
1889.

5. Clementi, Muzio. The Art of Playing the Piano. Trans. from L'art de
jouer le pianoforte by Max Vogrich. Schirmer, New York, 1898.

6. Colvin, Sidney. "Art." Encyclopaedia Britannica, eds. 9, 11, 12, 13,
1875-1926.

7. Coxeter, H. S. M. Convocation address, Proc. 4th Canadian Math.
Congress, 1957, pp. 8-10.

8. Dijkstra, Edsger W. EWD316: A Short Introduction to the Art of Pro-
gramming. T. H. Eindhoven, The Netherlands, Aug. 1971.

9. Ershov, A. P. Aesthetics and the human factor in programming. Comm.
ACM 15 (July 1972), 501-505.

10. Fielden, Thomas. The Science of Pianoforte Technique. Macmillan,
London, 1927.

11. Gore, George. The Art of Scientific Discovery. Longmans, Green,
London, 1878.

12. Hamilton, William. Lectures on Logic 1. Wm. Blackwood, Edinburgh,
1874.

13. Hodges, John A. Elementary Photography: The "Amateur Photographer"
Library 7. London, 1893. Sixth ed., revised and enlarged, 1907, p. 58.

14. Howard, C. Frusher. Howard's Art of Computation and golden rule
for equation of payments for schools, business colleges and self-
culture C. E Howard, San Francisco, 1879.

15. Hummel, J. N. The Art of Playing the Piano Forte. Boosey, London, 1827.
16. Kernighan B. W., and Plauger, P. J. The Elements of Programming Style.

McGraw-Hill, New York, 1974.
17. Kirwan, Richard. Elements of Mineralogy. Elmsly, London, 1784.
18. Knuth, Donald E. Minimizing drum latency time.J. ACM 8 (Apr. 1961},

119-150.
19. Knuth, Donald E., and Merner, J. N. ALGOL 60 confidential. Comm.

ACM 4 (June 1961), 268-272.
20. Knuth, Donald E. Seminumerical Algorithms: The Art of Computer

Programming 2. Addison-Wesley, Reading, Mass., 1969.
21. Knuth, Donald E. Structured programming with go to statements.

Computing Surveys 6 (Dec. 1974), 261-301.
22. Kochevitsky, George. The Art of Piano Playing: A Scientific Approach.

Summy-Birchard, Evanston, Ill., 1967.
23. Lehmer, Emma. Number theory on the SWAC. Proc. Symp. Applied

Math. 6, Amer. Math. Soc. (1956), 103-108.
24. Mahesh Yogi, Maharishi. The Science of Being and Art of Living.

Allen & Unwin, London, 1963.
25. Malevinsky, Moses L. The Science ofPlaywriting. Brentano's, New York,

1925.

Computer Programming as an Art 45

26. Manna, Zohar, and Pnueli, Amir. Formalization of properties of func-
tional programs. J. ACM 17 [July 19701, 555-569.

27. Marckwardt, Albert H. Preface to Funk and Wagnall's Standard Col-
lege Dictionary. Harcourt, Brace & World, New York, 1963, vii.

28. Mill, John Stuart. A System of Logic, Ratiocinative and Inductive.
London, 1843. The quotations are from the introduction, §2, and

from Book 6, Chap. 11 (12 in later editions), §5.
29. Mueller, Robert E. The Science of Art. John Day, New York, 1967.
30. Parsons, Albert Ross. The Science of Pianoforte Practice. Schirmer,

New York, 1886.
31. Pedoe, Daniel. The Gentle Art of Mathematics. English U. Press,

London, 1953.
32. Ruskin, John. The Stones of Venice 3. London, 1853.
33. Salton, G. A. Personal communication, June 21, 1974.
34. Snow, C. P. The two cultures. The New Statesman and Nation 52

lOct. 6, 1956), 413-414.
35. Snow, C. P. The Two Cultures: and a Second Look. Cambridge Univer-

sity Press, 1964.

Categories and Subject Descriptors:
D.1.2 [Software]: Programming Techniques--automatic programming;
K.6.1 [Management of Comput ing and Information Systems]: Project
and People Management; K.7.0 {Computing Milieux]: The Computing
Profession --general

General Terms:
Performance, Standards, Theory

46 DONALD E. KNUTH

