
1 9 7 3
T u r i n g
A w a r d
Lecture

The Programmer
as Navigator

CHARLES W. BACHMAN

The Turing Award citation read by Richard G. Canning, chairman of the
1973 ~lhring Award Committee, at the presentation of this lecture on August
28 at the ACM Annual Conference in Atlanta:

A significant change in the computer field in the last five to eight years
has been made in the way we treat and handle data. In the early days of
our field, data was intimately tied to the application programs that used
it. Now we see that we want to break that tie. We want data that is
independent of the application programs that use it--that is, data that is
organized and structured to serve many applications and many users. What
we seek is the database .

This movement toward the database is in its infancy. Even so, it appears
that there are now between 1,000 and 2,000 true database management
systems installed worldwide. In ten years very likely, there will be tens of
thousands of such systems. Just from the quantities of installed systems, the
impact of databases promises to be huge.

This year's recipient of the A. M. Turing Award is one of the real pioneers
of database technology. No other individual has had the influence that he
has had upon this aspect of our field. I single out three prime examples of
what he has done. He was the creator and principal architect of the first

Author's present address: Bachman Information Systems, Inc., 4 Cambridge Center,
Cambridge, MA 02142.

269

commercially available database management system-- the Integrated Data
Store--originally developed from 1961 to 1964.1,z.3,4 I-D-S is today one of
the three most widely used ddtabase management systems. Also, he was
one of the founding members of the CODASYL Database Task Group, and
served on that task group from 1966 to 1968. The specifications of that task
group are being implemented by many suppliers in various parts of the
world, s,6 Indeed, currently these specifications represent the only proposal
of stature for a common architecture for database management systems.
It is to his credit that these specifications, after extended debate and discus-
sion, embody much of the original thinking of the Integrated Data Store.
Thirdly, he was the creator of a powerful method for displaying data
relationships--a tool for database designers as well as application system
designers. 7,a

His contributions have thus represented the union of imagination and
practicality. The richness of his work has already had, and will continue
to have, a substantial influence upon our field.

I am very pleased to present the 1973 A. M. Turing Award to Charles
W. Bachman.

Copernicus completely reoriented our view of astronomical phenomena when
he suggested that the earth revolves about the sun. There is a growing feeling
that data processing people would benefit if they were to accept a radically new
point of view, one that would liberate the application programmer's thinking from
the centralism of core storage and allow him the freedom to act as a navigator
within a database. To do this, he must first learn the various navigational skills;
then he must learn the "rules of the road" to avoid conflict with other program-
mers as they jointly navigate the database information space.

This orientation will cause as much anguish among programmers as the
heliocentric theory did among ancient astronomers and theologians.

This year the whole world celebrates the five-hundredth birthday
of Nicolaus Copernicus, the famous Polish astronomer and mathemati-
cian. In 1543, Copernicus published his book, Concerning the RevolU-
tions of Celestial Spheres, which described a new theory about the relative
physical movements of the earth, the planets, and the sun. It was in
direct contradiction with the earth-centered theories which had been
established by Ptolemy 1400 years earlier.

1A general purpose programming system for random access memories (with S.B. Williams).
Proc. AFIPS 1964 FJCC, Vol. 26, AFIPS Press, Montvale, N.J., pp. 411-422.

2Integrated Data Store. DPMA Quarterly (Jan. 1965).

3Software for random access processing. Datamation (Apr. 1965), 36-41.

4 Integrated Data S t o r e - Case Study. Proc. See. Symp. on Computer-Centered Data Base
Systems sponsored by ARPA, SDC, and ESD, 1966.

SImplementation techniques for data structure sets. Proc. of SHARE Working Conf. on
Data Base Systems, Montreal, Canada, July 1973.

6The evolution of data structures. Proc. NordDATA Conf., Aug. 1973, Copenhagen,
Denmark, pp. 1075-1093.

7Data structure diagrams. Data Base 1, 2 (1969), Quarterly Newsletter of ACM SIGBDP,
pp. 4-10.

8Set concepts for data structures. In Encyclopedia off Computer Science, Amerback Corp.
(to be published in 1974).

270 CHARLES W. BACHMAN

Copernicus proposed the heliocentric theory that planets revolve
in a circular orbit around the sun. This theory was subjected to tremen-
dous and persistent criticism. Nearly 100 years later, Galileo was
ordered to appear before the Inquisition in Rome and forced to state
that he had given up his belief in the Copernican theory. Even this did
not placate his inquisitors, and he was sentenced to an indefinite prison
term, while Copernicus's book was placed upon the Index of Prohibited
Books, where it remained for another 200 years.

I raise the example of Copernicus today to illustrate a parallel that
I believe exists in the computing or, more properly, the information
systems world. We have spent the last 50 years with almost Ptolemaic
information systems. These systems, and most of the thinking about
systems, were based on a computer-centered concept. (I choose to speak
of 50 years of history rather than 25, for I see today's information
systems as dating from the beginning of effective punched card equip-
ment rather than from the beginning of the stored program computer.}

Just as the ancients viewed the earth with the sun revolving around
it, so have the ancients of our information systems viewed a tab machine
or computer with a sequential file flowing through it. Each was an
adequate model for its time and place. But after a while, each has been
found to be incorrect and inadequate and has had to be replaced by
another model that more accurately portrayed the real world and its
behavior.

Copernicus presented us with a new point of view and laid the
foundation for modern celestial mechanics. That view gave us the basis
for understanding the formerly mysterious tracks of the sun and the
planets through the heavens. A new basis for understanding is available
in the area of information systems. It is achieved by a shift from a
computer-centered to the database-centered point of view. This new
understanding will lead to new solutions to our database problems and
speed our conquest of the n-dimensional data structures which best
model the complexities of the real world.

The earliest databases, initially implemented on punched cards with
sequential file technology, were not significantly altered when they were
moved, first from punched card to magnetic tape and then again to
magnetic disk. About the only things that changed were the size of the
files and the speed of processing them.

In sequential file technology, search techniques are well established.
Start with the value of the primary data key, of the record of interest,
and pass each record in the file through core memory until the desired
record, or one with a higher key, is found. (A primary data key is a field
within a record which makes that record unique within the file.} Social
security numbers, purchase order numberS, insurance policy numbers,
bank account numbers are all primary data keys. Almost without
exception, they are synthetic attributes specifically designed and created
for the purpose of uniqueness. Natural attributes, e.g., names of people

I 9 7" :¢

'1 i t l ' i n g
A w ; l ~ (I

I , L ' { ' l U I { '

The Programmer as Navigator 271

and places, dates, time, and quantities, are not assuredly unique and
thus cannot be used.

The availability of direct access storage devices laid the foundation
for the Copernican-like change in viewpoint. The directions of "in" and
"out" were reversed. Where the input notion of the sequential file world
meant "into the computer from tape," the new input notion became
"into the database." This revolution in thinking is changing the pro-
grammer from a stationary viewer of objects passing before him in core
into a mobile navigator who is able to probe and traverse a database
at will.

Direct access storage devices also opened up new ways of record
retrieval by primary data key. The first was called randomizing,
calculated addressing, or hashing. It involved processing the primary
data key with a specialized algorithm, the output of which identified
a preferred storage location for that record. If the record sought was
not found in the preferred location, then an overflow algorithm was
used to search places where the record alternately would have been
stored, if it existed at all. Overflow is created when the preferred
location is full at the time the record was originally stored.

As an alternative to the randomizing technique, the index sequen-
tial access technique was developed. It also used the primary data key
to control the storage and retrieval of records, and did so threugh the
use of multilevel indices.

The programmer who has advanced from sequential file proces-
sing to either index sequential or randomized access processing has
greatly reduced his access time because he can now probe for a record
without sequentially passing all the intervening records in the file.
However, he is still in a one-dimensional world as he is dealing with
only one primary datakey, which is his sole means of controlling access.

From this point, I want to begin the programmer's training as a
full-fledged navigator in an n-dimensional data space. However, before
I can successfully describe this process, I want to review what "database
management" is.

It involves all aspects of storing, retrieving, modifying, and deleting
data in the files on personnel and production, airline reservations, or
laboratory experiments--data which is used repeatedly and updated
as new information becomes available. These files are mapped through
some storage structure onto magnetic tapes or disk packs and the drives
that support them.

Database management has two main functions. First is the inquiry
or retrieval activity that reaccesses previously stored data in order to
determine the recorded status of some real world entity or relation-
ship. This data has previously been stored by some other job, seconds,
minutes, hours, or even days earlier, and has been held in trust by the
database management system. A database management system has a
continuing responsibility to maintain data between the time when it

272 CHARLES W. BACHMAN

was stored and the time it is subsequently required for retrieval. This
retrieval activity is designed to produce the information necessary for
decision making.

Part of the inquiry activity is report preparation. In the early
years of sequential access storage devices and the resultant batch pro-
cessing there was no viable alternative to the production of massive
file dumps as formatted as reports. Spontaneous requirements to
examine a particular checking account balance, an inventory balance,
or a production plan could not be handled efficiently because the entire
file had to be passed to extract any data. This form of inquiry is now
diminishing in relative importance and will eventually disappear except
for archival purposes or to satisfy the appetite of a parkinsonian
bureaucracy.

The second activity of database management is to update, which
includes the original storage of data, its repeated modification as things
change, and ultimately, its deletion from the system when the data is
no longer needed.

The updating activity is a response to the changes in the real world
which must be recorded. The hiring of a new employee would cause
a new record to be stored. Reducing available stock would cause an
inventory record to be modified. Cancelling an airline reservation would
cause a record to be deleted. All of these are recorded and updated in
anticipation of future inquiries.

The sorting of files has been a big user of computer time. It was
used in sorting transactions prior to batch sequential update and in the
preparation of reports. The change to transaction-mode updating and
on-demand inquiry and report preparation is diminishing the
importance of sorting at the file level.

Let us now return to our story concerning the programmer as
navigator. We left him using the randomizing or the index sequential
technique to expedite either inquiry or update of a file based upon a
primary data key.

In addition to a record's primary key, it is frequently desirable to
be able to retrieve records on the basis of the value of some other fields.
For example, it may be desirable, in planning ten-year awards, to select
all the employee records with the "year-of-hire" field value equal to
1964. Such access is retrieval by secondary data key. The actual number
of records to be retrieved by a secondary key is unpredictable and may
vary from zero to possibly include the entire file. By contrast, a primary
data key will retrieve a maximum of one record.

With the advent of retrieval on secondary data keys, the previously
one-dimensional data space received additional dimensions equal to the
number of fields in the record. With small or medium-sized files, it is
feasible for a database system to index each record in the file on every
field in the record. Such totally indexed files are classified as inverted
files. In large active files, however, it is not economical to index every

I ~) 7 ~;

' l i H i n g

l ,~ ' l h l l L "

The Programmer as Navigator 273

field. Therefore, it is prudent to select the fields whose content will
be frequently used as a retrieval criterion and to create secondary
indices for those fields only.

The distinction between a file and a database is not clearly estab-
lished. However, one difference is pertinent to our discussion at this
time. In a database, it is common to have several or many different kinds
of records. For an example, in a personnel database there might be
employee records, department records, skill records, deduction records,
work history records, and education records. Each type of record has
its own unique primary data key, and all of its other fields are poten-
tial secondary data keys.

In such a database the primary and secondary keys take on an
interesting relationship when the primary key of one type of record
is the secondary key of another type of record. Returning to our per-
sonnel database as an example-- the field named "department code"
appears in both the employee record and the department record. It is
one of several possible secondary data keys of the employee records
and the single primary data key of the department records.

This equality of primary and secondary data key fields reflects real
world relationships and provides a way to reestablish these relationships
for computer processing purposes. The use of the same data value as a
primary key for one record and as a secondary key for a set of records
is the basic concept upon which data structure sets are declared and
maintained. The Integrated Data Store II-D-SI systems and all other sys-
tems based on its concepts consider their basic contribution to the pro-
grammer to be the capability to associate records into data structure
sets and the capability to use these sets as retrieval paths. All the COBOL
Database Task Group systems implementations fall into this class.

There are many benefits gained in the conversion from several files,
each with a single type of record, to a database with several types of
records and database sets. One such benefit results from the signifi-
cant improvement in performance that accrues from using the database
sets in lieu of both primary and secondary indices to gain access to all
the records with a particular data key value. With database sets, all
redundant data can be eliminated, reducing the storage space required.
If redundant data is deliberately maintained to enhance retrieval per-
formance at the cost of maintenance, then the redundant data can be
controlled to ensure that the updating of a value in one record will be
properly reflected in all other appropriate records. Performance is
enhanced by the so-called "clustering" ability of databases where the
owner and some or most of the members records of a set are physi-
cally stored and accessed together on the same block or page. These
systems have been running in virtual memory since 1962.

Another significant functional and performance advantage is to be
able to specify the order of retrieval of the records within a set based
upon a declared sort field or the time of insertion.

274 CHARLES W. BACHMAN

In order to focus the role of p rogrammer as navigator, let us
enumera te his opportunit ies for record access. These represent the
commands that he can give to the database system--singly, multiply
or in combinat ion with each o the r - - a s he picks his way through the
data to resolve an inquiry or to complete an update.

1. He can start at the beginning of the database, or at any known
record, and sequentially access the "next" record in the database until
he reaches a record of interest or reaches the end.

2. He can enter the database with a database key that provides direct
access to the physical location of a record. (A database key is the
permanent virtual memory address assigned to a record at the time that
it was created.)

3. He can enter the database in accordance with the value of a
pr imary data key. {Either the indexed sequential or randomized access
techniques will yield the same result.)

4. He can enter the database with a secondary data key value and
sequentially access all records having that particular data value for the
field.

5. He can start f rom the owner of a set and sequentially access all
the member records. (This is equivalent to converting a pr imary data
key into a secondary data key.)

6. He can start with any member record of a set and access either
the next or prior member of that set.

7. He can start from any member of a set and access the owner of
the set, thus convert ing a secondary data key into a pr imary data key.

Each of these access methods is interesting in itself, and all are very
useful. However, it is the synergistic usage of the entire collection which
gives the programmer great and expanded powers to come and go within
a large database while accessing only those records of interest in respon-
ding to inquiries and updating the database in anticipation of future
inquiries.

Imagine the following scenario to illustrate how processing a single
transaction could involve a path through the database. The transaction
carries with it the pr imary data key value or database key of the record
that is to be used to gain an entry point into the database. That record
would be used to gain access to other records (either owner or members)
of a set. Each of these records is used in turn as a point of departure
to examine another set.

For example, consider a request to list the employees of a particular
depar tment when given its depar tmental code. This request could be
supported by a database containing only two different types of records:
personnel records and department records. For simplicity purposes, the
depar tment record can be envisioned as having only two fields: the
depar tment code, which is the pr imary data key; and the depar tment
name, which is descriptive. The personnel record can be envisioned

I 9 7 .'~

' lu r ing
Award
I .I'lL! I I I1"{ '

The Programmer as Navigator 275

as having only three fields: the employee number, which is the primary
data key for the record; the employee name, which is descriptive; and
the employees department code, which is a secondary key which
controls set selection and the records placement in a set. The joint usage
of the department code by both records and the declaration of a set
based upon this data key provide the basis for the creation and
maintenance of the set relationship between a department record and
all the records representing the employees of that department. Thus
the usage of the set of employee records provides the mechanism to
readily list all the employees of a particular department following the
primary data key retrieval of the appropriate department record. No
other record for index need be accessed.

The addition of the department manager's employee number to the
department record greatly extends the navigational opportunities, and
provides the basis for a second class of sets. Each occurrence of this
new class includes the department records for all the departments
managed by a particular employee. A single employee number or
department code now provides an entry point into an integrated data
structure of an enterprise. Given an employee number, and the set of
records of departments managed, all the departments which he manages
can be listed. The personnel of each such department can be further
listed. The question of departments managed by each of these
employees can be asked repeatedly until all the subordinate employees
and departments have been displayed. Inversely, the same data struc-
ture can easily identify the employee's manager, the manager's manager,
and the manager's manager's manager, and so on, until the company
president is reached.

There are additional risks and adventures ahead for the programmer
who has mastered operation in the n-dimensional data space. As
navigator he must brave dimly perceived shoals and reefs in his sea,
which are created because he has to navigate in a shared database
environment. There is no other obvious way for him to achieve the
required performance.

Shared access is a new and complex variation of multiprogram-
ming or time sharing, which were invented to permit shared, but
independent, use of the computer resources. In multiprogramming, the
programmer of one job doesn't know or care that his job might be
sharing the computer, as long as he is sure that his address space is
independent of that of any other programs. It is left to the operating
system to assure each program's integrity and to make the best use of
the memory, processor, and other physical resources. Shared access is
a specialized version of multiprogramming where the critical, shared
resources are the records of the database. The database records are
fundamentally different than either main storage or the processor
because their data fields change value through update and do not return
to their original condition afterward. Therefore, a job that repeatedly

276 CHARLES W. BACHMAN

uses a database record may find that record 's content or set member-
ship has changed since the last t ime it was accessed. As a result, an
algorithm at tempting a complex calculation may get a somewhat un-
stable picture. Imagine at tempting to converge on an iterative solution
while the variables are being randomly changed! Imagine at tempting
to carry out a trial balance while someone is still posting transactions
to the accounts! Imagine two concurrent jobs in an airline reservations
system trying to sell the last seat on a flight!

One's first reaction is that this shared access is nonsense and
should be forgotten. However, the pressures to use shared access are
t remendous. The processors available today and in the foreseeable
future are expected to be much faster than are the available direct access
storage devices. Furthermore, even if the speed of storage devices were
to catch up with that of the processors, two more problems would
maintain the pressure for successful shared access. The first is the trend
toward the integration of many single purpose files into a few integrated
databases~ the second is the trend toward interactive processing where
the processor can only advance a job as fast as the manual ly created
input messages allow. Without shared access, the entire database would
be locked up until a batch program or transaction and its human
interaction had terminated.

The performance of today's direct access storage devices is greatly
affected by patterns of usage. Performance is quite slow if the usage
is an alternating pat tern of: access, process, access, process where
each access depends upon the interpretat ion of the prior one. When
many independent accesses are generated through multiprogramming,
they can often be executed in parallel because they are directed toward
different storage devices. Furthermore, w h en there is a queue of
requests for access to the same device, the transfer capacity for that
device can actually be increased through seek and latency reduction
techniques. This potential for enhancing throughput is the ultimate
pressure for shared access.

Of the two main functions of database management , inquiry and
update, only update creates a potential problem in shared access. An
unlimited number of jobs can extract data simultaneously from a
database without trouble. However, once a single job begins to update
the database, a potential for trouble exists. The processing of a trans-
action may require the updating of only a few records out of the
thousands or possibly millions of records within a database. On that
basis, hundreds of jobs could be processing transactions concurrent ly
and actually have no collisions. However, the time will come when two
jobs will want to process the same record simultaneously.

The two basic causes of trouble in shared access are interference
and contamination. Interference is defined as the negative effect of the
updating activity of one job upon the results of another. The example
I have given of one job running an accounting trial balance while

I ~ 7 i~

' l Lun-inlg

I , ec l u r c

The Programmer as Navigator 277

another was posting transactions illustrates the interference problem.
When a job has been interfered with, it must be aborted and restarted
to give it another opportunity to develop the correct output. Any output
of the prior execution must also be removed because new output will
be created. Contamination is defined as the negative effect upon a job
which results from a combination of two events: when another job has
aborted and when its output (i.e., changes to the database or messages
sent) has already been read by the first job. The aborted job and its
output will be removed from the system. Moreover, the jobs con-
taminated by the output of the aborted job must also be aborted and
restarted so that they can operate with correct input data.

A critical question in designing solutions to the shared access
problem is the extent of visibility that the application programmer
should have. The Weyerhaeuser Company's shared access version of
I-D-S was designed on the premise that the programmer should not be
aware of shared access problems. That system automatically blocks each
record updated and every message sent by a job until that job terminates
normally, thus eliminating the contamination problem entirely. One side
effect of this dynamic blocking of records is that a deadlock situation
can be created when two or more jobs each want to wait for the other
to unblock a desired record. Upon detecting a deadlock situation, the
I-D-S database system responds by aborting the job that created the
deadlock situation, by restoring the records updated by that job, and
by making those records available to the jobs waiting. The aborted job,
itself, is subsequently restarted.

Do these deadlock situations really exist? The last I heard, about
10 percent of all jobs started in Weyerhaeuser's transaction-oriented
system had to be aborted for deadlock. Approximately 100 jobs per hour
were aborted and restarted. Is this terrible? Is this too inefficient? These
questions are hard to answer because our standards of efficiency in
this area are not clearly defined. Furthermore, the results are
application-dependent. The Weyerhaeuser I-D-S system is 90 percent
efficient in terms of jobs successfully completed. However, the real
questions are:

--Would the avoidance of shared access have permitted more or fewer
jobs to be completed each hour?
--Would some other strategy based upon the detecting rather than
avoiding contamination have been more efficient?
--Would making the programmer aware of shared access permit him
to program around the problem and thus raise the efficiency?

All these questions are beginning to impinge on the programmer
as navigator and on the people who design and implement his naviga-
tional aids.

My proposition today is that it is time for the application program-
mer to abandon the memory-centered view, and to accept the challenge
and opportunity of navigation within an n-dimensional data space. The

278 CHARLES W. BACHMAN

software systems needed to support such capabilities exist today and
are becoming increasingly available.

Bertrand Russell, the noted English mathematician and philosopher,
once stated that the theory of relativity demanded a change in our
imaginative picture of the world. Comparable changes are required in
our imaginative picture of the information system world.

The major problem is the reorientation of thinking of data processing
people. This includes not only the programmer but includes the applica-
tion system designers who lay out the basic application programming
tasks and the product planners and the system programmers who will
create tomorrow's operating system, message system, and database
system products.

Copernicus laid the foundation for the science of celestial mechanics
more than 400 years ago. It is this science which now makes possible
the minimum energy solutions we use in navigating our way to the
moon and the other planets. A similar science must be developed which
will yield corresponding minimum energy solutions to database access.
This subject is doubly interesting because it includes the problems of
traversing an existing database, the problems of how to build one in
the first place and how to restructure it later to best fit the changing
access patterns. Can you imagine restructuring our solar system to
minimize the travel time between the planets?

It is important that these mechanics of data structures be developed
as an engineering discipline based upon sound design principles. It is
important that it can be taught and is taught. The equipment costs of
the database systems to be installed in the 1980's have been estimated
at $100 billion {at 1970 basis of value). It has further been estimated
that the absence of effective standardization could add 20 percent or
$20 billion to the bill. Therefore, it is prudent to dispense with the
conservatism, the emotionalism, and the theological arguments which
are currently slowing progress. The universities have largely ignored
the mechanics of data structures in favor of problems which more
nearly fit a graduate student's thesis requirement. Big database systems
are expensive projects which university budgets simply cannot afford.
Therefore, it will require joint university/industry and university/govern-
ment projects to provide the funding and staying power necessary to
achieve progress. There is enough material for a half dozen doctoral
theses buried in the Weyerhaeuser system waiting for someone to come
and dig it out. By this I do not mean research on new randomizing
algorithms. I mean research on the mechanics of nearly a billion
characters of real live business data organized in the purest data
structures now known.

The publication policies of the technical literature are also a problem.
The ACM SIGBDP and SIGFIDET publications are the best available, and
membership in these groups should grow. The refereeing rules and
practices of Communications of the ACM result in delays of one year

I ~ 7 ,';

'1 m- ing

I ,l~'t ' l I I i ' t "

The Programmer as Navigator 279

to 18 months be tween submittal and publication. Add to that the t ime
for the author to prepare his ideas for publication and you have at least
a two-year delay between the detection of significant results and their
earliest possible publication.

Possibly the greatest single barrier to progress is the lack of general
database information within a very large portion of the computer users
resulting from the domination of the market by a single supplier. If this
group were to bring to bear its experience, requirements, and problem-
solving capabilities in a completely open exchange of information, the
rate of change would certainly increase. The recent action of SHARE to
open its membership to all vendors and all users is a significant step
forward. The SHARE-sponsored Working Conference on Database
Systems held in Montreal in July {1973) provided a forum so that users
of all kinds of equipment and database systems could describe their
experiences and their requirements .

The widening dialog has started. I hope and trust that we can
continue. If approached in this spirit, where no one organization
at tempts to dominate the thinking, then I am sure that we can provide
the programmer with effective tools for navigation.

Related articles are:
The evolution of storage structures. Comm. ACM 15, 7 (July 1972), 628-634.
Architectural Definition Technique: its objectives, theory, process, facilities

and practice (with J. Bouvard). Proc. 1972 ACM SIGFIDET Workshop on Data
Description, Access and Control, pp. 257-280.

Data space mapped into three dimensions; a viable model for studying data
structures. Data Base Management Rep., InfoTech Information Ltd., Berkshire,
U.K., 1973.

A direct access system with procedurally generated data structuring capa-
bility (with S. Brewer). Honeywell Comput. J. (to appear).

Categories and Subject Descriptors:
H.2.2 [Database Management]: Physical Design--access methods; H.2.4
[Database Management]: Systems-- transaction processing; H.3.2]Storage
and Retrieval]: Information Storage--file organization; H.3.3 Information
Storage and Retrieval]: Information Search and Retrieval- retrieval models

General Terms:
Algorithms, Design, Performance

Additional Key Words and Phrases:
Contamination, interference

280 CHARLES W. BACHMAN

Postscript I 9 7 : i

' 1 . r ing
/~1%% i l I ' l l

I , t ' (' h l rt" The Programmer
as Navigator, Architect,

Communicator, Modeler,
Collaborator, and Supervisor

CHARLES W. BACHMAN
Bachman Information Systems, Inc.

Thirteen years have passed since the writing of the Turing Award paper
entitled, "The Programmer as Navigator." Databases have become common,
even popular. Some programmers navigate. Others join. I have spent con-
siderable effort in arguing the merits of the network (CODASYL) data model
and in extending it for greater modeling power.l,2,a, 4 Arguments and debates
concerning data models waxed hot and heavy and have now pretty much
simmered down. Today, the only reasonable consensus is that one can do useful
work with DBMSs based upon any of the popular data models, even with those
DBMSs that have no apparent affinity to any part icular data model.

The Programmer as Architect
The study of the architecture of computer-based information systems has

progressed well in this period. Two projects, important in their own right, were
instrumental in bringing this subject to the forefront. The ANSI/X3/SPARC Study
Group on Database Management (1972-1977) reported s its architecture of data
storage and retrieval. This was one of the first at tempts to clearly understand
and document the layers of software and human activity involved in the process
of data storage and retrieval. It went further and identified and described the
interfaces between the various software modules and between them and their
human counterparts (administrators, database designers, and programmers).
It was significant that this report identified both administrat ive and run-time
interfaces. This project was instrumental in establishing the concept of a
conceptual schema 6 as a higher level abstraction of information structure defini-
tions, which is independent of data representation.

~Bachman, C.W. Why restrict the modeling capability of the CODASYL data structure
sets? In Proceedings of the AFIPS National Computer Conference, vol. 46. AFIPS Press, Reston,
Va., 1977.
2Bachman, C. W., and Daya, M. The role concept in data models. In Proceedings of the
3rd Very Large Database Conference, 1977.
3Bachman, C.W. The structuring capabilities of the molecular data model (partnership
data model). In Entily-Relationship Approach to Software Engineering. Elsevier Science, New
York, 1983.
4Bachman, C.W. The partnership data model. Presen{ed at the Fall 1983 IEEE Com-
puter Conference {Washington, D.C.).
SANSI/X3/SPARC/Study G r o u p - Database Management Systems. Framework Report on
Database Management Systems. AFIPS Press, Reston, Va., 1978.
qSO/TC97/SCS/WG3. Concepts and terminology for the conceptual schema. January 15,
1981.

Author's address: Bachman Information Systems, Inc., 4 Cambridge Center, Cambridge,
MA 02142.

281

T h e P r o g r a m m e r as C o m m u n i c a t o r
The International Organization for Standardization, through its ISO/TC97/

SC16, established (1979-1982) the Reference Model for Open Systems Inter-
connection. This Reference Model is an architectural master plan for data
communications established as an international standard 7 with the intent that
it be the controlling and integrating standard for a series of more detailed
standards to follow. This architecture identified seven layers of processing
involved in and supporting communication between application processes. Each
layer was specified in terms of its "administrative entities, ' 's "processing
entities," "services," and "protocols." For the processsing entities of each layer,
there were four important interfaces to be established and standardized:

(1) the services that a processing entity offers to the processing entities in the
layer immediately above;

(2) the communication protocol by which a processing entity communicates
with other processing entities in the same layer;

(3) the use, by the processing entities of one layer, of the services provided
by the processing entities of the layer immediately below;

(4) the administrative protocol by which a processing entity is controlled by
the administrative entities within the same layer.

The detailed standards, developed subsequently for each layer, spell out the
individual protocols, services, and service usage.

The vision and scope of this work can be seen in part by reviewing some
of the discussions relating to addressability. How large should the address space
be to identify all the processing entities that might wish to communicate with
one another? One discussion followed this scenario:

There will be close to 10 billion people in the world by the end of the year 2000
{10 billion addresses).

Assume that, on the average, 100 robots will be working for each of these people
(1 trillion addresses).

Plan for unforeseen contingencies and a useful address space life of 25 years; so
multiply by 10 (10 trillion addresses).

Assume that the assignment of address is made through the political processes
starting with the United Nations and that 99 percent of the addresses are effec-
tively unavailable for applications level communications (1 quadrillion addresses).

Thus 1 quadrillion addresses is about the right order of magnitude for the
address space being considered. This is a 1 followed by 15 zeros in the decimal
system, or a 1 followed by approximately 50 zeros in the binary system.

This year the work on ISO standards for Open Systems Interconnection has
received a great boost in support in the United States by the creation of COS
(Corporation for Open Systems). COS is an industry-wide organization of users,
carriers, and manufacturers formed to encourage the implementation of the
ISO standards and to provide the testing environment so that a new or revised
implementation can be validated for adherence to the ISO standards.

7150. Computers and Information Systems--Open Systems Interconnection Refer-
ence Model. Standard 7498. American National Standards Institute, New York, N.Y.

SThe word "entity" is used in the ISO/TC97 world to mean an active element that plays
some part in the communication process. I have used the adjectives "processing" and
"administrative" to distinguish the communication-time entities from the set-up-time
entities. This usage of the word entity contrasts with its use in the data modeling world
where the word entity means something that exists and about which something is known.

282 CHARLES W. BACHMAN

The author, in his capacity as the chairman of ISO/TC97/SC16 reporting to
ISO/TC97, recommended to TC97 that it develop a "reference model for
computer-based information systems. ''9,1° This extended reference model
would be used to place all of ISO/TC97's work on computers and information
systems into perspective and thus highlight the areas most critical for further
standardization.

In 1984-1985, ISO/TC97 reorganized its committee structure creating a new
subcommittee, ISO/TC97/SC21, which has assumed the former responsibilities
of SC16 and has been given the additional responsibil i ty of defining the
architecture of data storage and retrieval. With time this responsibili ty should
grow to include the aspects of data integrity and data security, since it is not
possible to create a complete architecture for data storage and retrieval and
data communication without their being integrated with the aspects of integrity
and security.

The Programmer as Modeler
I have invested a good deal of my time in these 13 years in extending the

conceptual schema work of ANSI/SPARC Study Group on DBMS, joining it with
my work on data communications and formal description techniques. The scope
of the original conceptual schema work was limited to the information that
existed in the business and to its data formats as stored in files and databases
(internal schema) and as viewed by programs (external schema). My goal was
to extend this abstraction to include descriptions of all the active agents (people,
computer programs, and physical processes} that were the users of the infor-
mation, the communication paths that they use, and the messages that are ex-
changed.

I wanted to extend this abstraction further to include the rules that
governed the behavior of the users of the information. These extended
conceptual schemata have been called "enterprise models" or "business
models".

Why build a business model? First, as a means of defining the information
processing requirements for an organization in a manner that is equally clear
to the user community and to the data processing community. Second, to provide
the basis for automating the process of generating application software. I define
the term application software to include database and file descriptions, the
application programs, and the environmental control parameters required to
install the required files and programs in the computers and to control their
operation.

The step of translating a business model into the set of application software
required to support that model is the step of translating the what of the business
world into the how of the computer and communications world. This transla-
tion requires three additional elements over and above the business model as
the formal specification:

1. It requires information about the quantities, rates, and response times that
must be satisfied.

2. It requires information about the available processors, storage, and
communication hardware and information about the available compilers, DBMSs,
communicat ion systems, transaction monitors, and operating systems.

9Bachman, C.W. The context of open systems interconnection within computer-based
information systems. In Proceedings of Gesellschaft ~r Informatik, Jan. 1980.

~°Bachman, C. W., and Ross, R.G. Toward a more complete reference model of computer-
based information systems. J. Cornput. Standards 1 (1982); also published in Comput.
Networks 6 11982).

The Programmer as Navigator 283

3. It also requires the expertise to understand the operating and performance
characteristics of the available software and hardware options and how to
best use them to meet the functional and quantitative requirements in a cost-
effective way.

This performance and optimization expertise has been embodied in the persons
of real people, the database designers, application programmers, and system
programmers. The best of them are very, very good, but the work of many has
been disappointing. All these activities are expensive and more time consuming
then any one would wish.

The Programmer as Collaborator
This shortage of good people has started us looking for a means of automating

the work of database designers and systems and application programmers.
This automation is difficult, as the process of translating the business model
into efficient application software is not completely deterministic. There are
frequently several alternative approaches with different dynamics and costs.
Real expertise and judgment are involved. This difficulty has led to the
examination of the tools and techniques coming out of the world of artificial
intelligence, where there has been an emphasis on domains of imperfect
knowledge.

The AI world, with its knowledge-based software system, has considerable
experience developing interactive systems, where a resident human expert can
collaborate with a "cloned" expert, which is built into the software to achieve
some otherwise difficult task. Together they can carry out all the needed transla-
tions between the conceptual level of abstraction and the physical level taking
into consideration the performance problems and opportunities.

Programmer as Supervisor
It is reasonable to think that these cloned experts, who are embodied in

knowledge-based {expert} systems, will improve with time. As this happens,
the role of the resident human expert {database designer, application program-
mer, or systems programmer) will progressively shift from that of a collaborator
with the knowledge-based system to that of the supervisor. This supervisor
will be responsible for checking the work of the knowledge-based system, to
see that it has covered all modes of operation and all likely operating condi-
tions. After checking and requesting any appropriate modifications, the human
expert as supervisor will be required to countersign the final design, just as
the engineering supervisor countersigns the work of the engineering staff. In
business information systems, nothing goes into production without its being
reviewed and someone's taking responsibility for it.

Summary
It is somewhat poetic to see the functional joining of database technology

with AI technology. Poetic, because the early (1960) documentation of list
processing in the artificial intelligence literature provided the basis for the linked
lists used as the first and still most prevalent implementation mode for databases.
The confusion between the concept and most prevalent implementation mode
of the data structure set has been troublesome. There are a number of well-
known techniques 11 for implementing data structure sets, each with its own

11Bachman, C.W. Implementation of techniques for data structure sets. In Proceedings
of SHARE Workshop on DataBase Systems [Montreal, Canada, July, 1973).

284 CHARLES W. BACHMAN

performance characteristics, while maintaining the functional characteristics
of the set.

It will be interesting to see whether the knowledge and implementat ion
expertise of the database world will be able to make a significant contribution
to the LISP and AI world as it reaches for commercial applications where the
knowledge bases are large and concurrently shared among many distributed,
cooperating AI workstations. Here performance and responsiveness are tied
to the successful operation of shared virtual memories for knowledge-base
purposes.

I ~ 7 :~

' l u r i n g

I c (h i r ("

The Programmer as Navigator 285

1 9 7 5
T u r i n g
A w a r d
Lecture

Computer Science
as Empirical Inquiry:
Symbols and Search

A L L E N N E W E L L a n d H E R B E R T A. S I M O N

The 1975 ACM Taring Award was presented jointly to Alien Newell and
Herbert A. Simon at the ACM Annual Conference in Minneapolis, October
20. In introducing the recipients, Bernard A. Galler, Chairman of the
Taring Award Committee, read the following citation:

"It is a privilege to be able to present the ACM Taring Award to two
friends of long standing, Professors Allen Newell and Herbert A. Simon, both
of Carnegie-Mellon University.

"In joint scientific efforts extending over twenty years, initially in
collaboration with J. C. Shaw at the RAND Corporation, and subsequently
with numerous faculty and student colleagues at Carnegie-Mellon Univer-
sity, they have made basic contributions to artificial intelligence, the
psychology of human cognition, and list processing.

"In artificial intelligence, they contributed to the establishment of
the field as an area of scientific endeavor, to the development of heuristic
programming generally, and of heuristic search, means-ends analysis,
and methods of induction, in particular, providing demonstrations of
the sufficiency of these mechanisms to solve interesting problems.

"In psychology, they were principal instigators of the idea that human
cognition can be described inn terms of a symbol system, and they have
Authors' present address: A. Newell, Department of Computer Science, and H. A. Simon,
Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.

287

