
1 9 7 5
T u r i n g
A w a r d
Lecture

Computer Science
as Empirical Inquiry:
Symbols and Search

A L L E N N E W E L L a n d H E R B E R T A. S I M O N

The 1975 ACM Taring Award was presented jointly to Alien Newell and
Herbert A. Simon at the ACM Annual Conference in Minneapolis, October
20. In introducing the recipients, Bernard A. Galler, Chairman of the
Taring Award Committee, read the following citation:

"It is a privilege to be able to present the ACM Taring Award to two
friends of long standing, Professors Allen Newell and Herbert A. Simon, both
of Carnegie-Mellon University.

"In joint scientific efforts extending over twenty years, initially in
collaboration with J. C. Shaw at the RAND Corporation, and subsequently
with numerous faculty and student colleagues at Carnegie-Mellon Univer-
sity, they have made basic contributions to artificial intelligence, the
psychology of human cognition, and list processing.

"In artificial intelligence, they contributed to the establishment of
the field as an area of scientific endeavor, to the development of heuristic
programming generally, and of heuristic search, means-ends analysis,
and methods of induction, in particular, providing demonstrations of
the sufficiency of these mechanisms to solve interesting problems.

"In psychology, they were principal instigators of the idea that human
cognition can be described inn terms of a symbol system, and they have
Authors' present address: A. Newell, Department of Computer Science, and H. A. Simon,
Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.

287

developed detailed theories [or human problem solving, verbal learning and
inductive behavior in a number of task domains, using computer
programs embodying these theories to simulate the human behavior.

"They were apparently the inventors of list processing, and have
been major contributors to both software technology and the development
of the concept of the computer as a system of manipulating symbolic
structures and not just as a processor o[numerical data.

"It is an honor for Pro[essors Newell and Simon to be given this award,
but it is also an honor [or ACM to be able to add their names to our
list of recipients, since by their presence, they will add to the prestige and
importance o[the ACM Taring Award."

Computer science is the study of the phenomena surrounding
computers. The founders of this society understood this very well when
they called themselves the Association for Computing Machinery. The
m a c h i n e - - n o t just the hardware, but the programmed, living
mach ine - - i s the organism we study.

This is the tenth Turing Lecture. The nine persons who preceded
us on this platform have presented nine different views of computer
science, for our organism, the machine, can be studied at many levels
and from many sides. We are deeply honored to appear here today and
to present yet another view, the one that has permeated the scientific
work for which we have been cited. We wish to speak of computer
science as empirical inquiry.

Our view is only one of many; the previous lectures make that clear.
However, even taken together the lectures fail to cover the whole scope
of our science. Many fundamenta l aspects of it have not been
represented in these ten awards. And if the t ime ever arrives, surely
not soon, when the compass has been boxed, when computer science
has been discussed from every side, it will be t ime to start the cycle
again. For the hare as lecturer will have to make an annual sprint to
overtake the cumulat ion of small, incremental gains that the tortoise
of scientific and technical development has achieved in his steady
march. Each year will create a new gap and call for a new sprint, for
in science there is no final word.

Computer science is an empirical discipline. We would have called
it an experimental science, but like astronomy, economics, and geology,
some of its unique forms of observation and experience do not fit
a nar row stereotype of the experimental method. None the less, they
are experiments. Each new machine that is built is an experiment.
Actually constructing the machine poses a quest ion to nature; and
we listen for the answer by observing the machine in operat ion and
analyzing it by all analytical and measurement means available. Each
new program that is built is an experiment. It poses a question to nature,
and its behavior offers clues to an answer. Neither machines nor
programs are black boxes; they are artifacts that have been designed,
both hardware and software, and we can open them up and look
inside. We can relate their s tructure to their behavior and draw many
lessons from a single experiment. We don't have to build 100 copies

288 ALLEN NEWELL and HERBERT A. SIMON

of, say, a theorem prover, to demonstrate statistically that it has not
overcome the combinatorial explosion o:: search in the way hoped for.
Inspection of the program in the light of a few runs reveals the flaw
and lets us proceed to the next attempt.

We build computers and programs for many reasons. We build
them to serve society and as tools for carrying out the economic
tasks of society. But as basic scientists we build machines and programs
as a way of discovering new phenomena and analyzing phenomena
we already know about. Society often becomes confused about this,
believing that computers and programs are to be constructed only
for the economic use that can be made of them (or as intermediate
items in a developmental sequence leading to such use). It needs
to understand that the phenomena surrounding computers are deep
and obscure, requiring much experimentation to assess their nature.
It needs to understand that, as in any science, the gains that accrue
from such experimentation and understanding pay off in the permanent
acquisition of new techniques; and that it is these techniques that
will create the instruments to help society in achieving its goals.

Our purpose here, however, is not to plead for understanding
from an outside world. It is to examine one aspect of our science,
the development of new basic understanding by empirical inquiry.
This is best done by illustrations. We will be pardoned if, presuming
upon the occasion, we choose our examples from the area of our
own research. As will become apparent, these examples involve the
whole development of artificial intelligence, especially in its early
years. They rest on much more than our own personal contributions.
And even where we have made direct contributions, this has been
done in cooperation with others. Our collaborators have included
especially Cliff Shaw, with whom we formed a team of three through
the exciting period of the late fifties. But we have also worked with
a great many colleagues and students at Carnegie-Mellon University.

Time permits taking up just two examples. The first is the
development of the notion of a symbolic system. The second is the
development of the notion of heuristic search. Both conceptions have
deep significance for understanding how information is processed
and how intelligence is achieved. However, they do not come close
to exhausting the full scope of artificial intelligence, though they seem
to us to be useful for exhibiting the nature of fundamental knowledge
in this part of computer science.

I 9 7 5
'1 l , r i , l g

A ~ v a r d

i , (' (' J I I f t"

I
Symbols and

Physical Symbol Systems
One of the fundamental contributions to knowledge of computer

science has been to explain, at a rather basic level, what symbols are.
This explanation is a scientific proposition about Nature. It is empirically
derived, with a long and gradual development.

Computer Science as Empirical Inquiry: Symbols and Search 289

Symbols lie at the root of intelligent action, which is, of course, the
primary topic of artificial intelligence. For that matter, it is a primary
question for all of computer science. All information is processed by
computers in the service of ends, and we measure the intelligence of
a system by its ability to achieve stated ends in the face of variations,
difficulties and complexities posed by the task environment.
This general investment of computer science in attaining intelligence
is obscured when the tasks being accomplished are limited in scope,
for then the full variations in the environment can be accurately fore-
seen. It becomes more obvious as we extend computers to more global,
complex and knowledge-intensive tasks -- as we attempt to make them
our agents, capable of handling on their own the full contingencies
of the natural world.

Our understanding of the systems requirements for intelligent action
emerges slowly. It is composite, for no single elementary thing accounts
for intelligence in all its manifestations. There is no "intelligence
principle," just as there is no "vital principle" that conveys by its very
nature the essence of life. But the lack of a simple deus ex machina does
not imply that there are no structural requirements for intelligence.
One such requirement is the ability to store and manipulate symbols.
To put the scientific question, we may paraphrase the title of a famous
paper by Warren McCulloch [1961]: What is a symbol, that intelligence
may use it, and intelligence, that it may use a symbol?

Laws o f
Qual i ta t ive S tructure

All sciences characterize the essential nature of the systems they
study. These characterizations are invariably qualitative in nature, for
they set the terms within which more detailed knowledge can be
developed. Their essence can often be captured in very short, very
general statements. One might judge these general laws, due to their
limited specificity, as making relatively little contribution to the sum
of a science, were it not for the historical evidence that shows them
to be results of the greatest importance.

The Cell Doctrine in Biology. A good example of a law of
qualitative structure is the cell doctrine in biology, which states that
the basic building block of all living organisms is the cell. Cells come
in a large variety of forms, though they all have a nucleus surrounded
by protoplasm, the whole encased by a membrane. But this internal
structure was not, historically, part of the specification of the cell
doctrine; it was subsequent specificity developed by intensive investiga-
tion. The cell doctrine can be conveyed almost entirely by the statement
we gave above, along with some vague notions about what size a
cell can be. The impact of this law on biology, however, has been
tremendous, and the lost motion in the field prior to its gradual accept-
ance was considerable.

290 ALLEN NEWELL and HERBERT A. SIMON

Plate Tectonics in Geology. Geology provides an interesting
example of a qualitative structure law, interesting because it has
gained acceptence in the last decade and so its rise in status is still fresh
in memory. The theory of plate tectonics asserts that the surface of
the globe is a collection of huge plates--a few dozen in all-- which
move (at geological speeds} against, over, and under each other into
the center of the earth, where they lose their identity. The movements
of the plates account for the shapes and relative locations of the
continents and oceans, for the areas of volcanic and earthquake activity,
for the deep sea ridges, and so on. With a few additional particulars
as to speed and size, the essential theory has been specified. It was
of course not accepted until it succeeded in explaining a number of
details, all of which hung together (e.g., accounting for flora, fauna,
and stratification agreements between West Africa and Northeast South
America}. The plate tectonics theory is highly qualitative. Now that
it is accepted, the whole earth seems to offer evidence for it everywhere,
for we see the world in its terms.

The Germ Theory of Disease. It is little more than a century since
Pasteur enunciated the germ theory of disease, a law of qualitative
structure that produced a revolution in medicine. The theory proposes
that most diseases are caused by the presence and multiplication in
the body of tiny single-celled living organisms, and that contagion
consists in the transmission of these organisms from one host to another.
A large part of the elaboration of the theory consisted in identifying
the organisms associated with specific diseases, describing them, and
tracing their life histories. The fact that the law has many exceptions--
that many diseases are not produced by germs--does not detract from
its importance. The law tells us to look for a particular kind of cause;
it does not insist that we will always find it.

The Doctrine of Atomism. The doctrine of atomism offers an
interesting contrast to the three laws of qualitative structure we have
just described. As it emerged from the work of Dalton and his
demonstrations that the chemicals combined in fixed proportions, the
law provided a typical example of qualitative structure: the elements
are composed of small, uniform particles, differing from one element
to another. But because the underlying species of atoms are so simple
and limited in their variety, quantitative theories were soon formulated
which assimilated all the general structure in the original qualitative
hypothesis. With cells, tectonic plates, and germs, the variety of struc-
ture is so great that the underlying qualitative principle remains
distinct, and its contribution to the total theory clearly discernible.

Conclusion: Laws of qualitative structure are seen everywhere
in science. Some of our greatest scientific discoveries are to be found
among them. As the examples illustrate, they often set the terms on
which a whole science operates.

! 9 7 5
' luring

I , l ' l ' l u r l '

Computer Science as Empirical Inquiry: Symbols and Search 291

Physical Symbol Systems
Let us return to the topic of symbols, and define a physical symbol

system. The adjective "physical" denotes two important features: (1)
Such systems clearly obey the laws of physics--they are realizable by
engineered systems made of engineered components; (2) although our
use of the term "symbol" prefigures our intended interpretation, it is
not restricted to human symbol systems.

A physical symbol system consists of a set of entities, called symbols,
which are physical patterns that occur as components of another type
of entity called an expression (or symbol structure). Thus, a symbol
structure is composed of a number of instances (or tokens) of symbols
related in some physical way (such as one token being next to another).
At any instant of time the system will contain a collection of these
symbol structures. Besides these structures, the system also contains
a collection of processes that operate on expressions to produce other
expressions: processes of creation, modification, reproduction and
destruction. A physical symbol system is a machine that produces
through time an evolving collection of symbol structures. Such a system
exists in a world of objects wider than just these symbolic expressions
themselves.

Two notions are central to this structure of expressions, symbols,
and objects: designation and interpretation.

Designation. An expression designates an object if, given the expres-
sion, the system can either affect the object itself or behave in ways
dependent on the object.

In either case, access to the object via the expression has been obtained,
which is the essence of designation.

Interpretation. The system can interpret an expression if the expres-
sion designates a process and if, given the expression, the system
can carry out the process.

Interpretation implies a special form of dependent action: given an
expression the system can perform the indicated process, which is to
say, it can evoke and execute its own processes from expressions that
designate them.

A system capable of designation and interpretation, in the sense
just indicated, must also meet a number of additional requirements,
of completeness and closure. We will have space only to mention
these briefly; all of them are important and have far-reaching conse-
quences.

(1) A symbol may be used to designate any expression whatsoever.
That is, given a symbol, it is not prescribed a priori what expressions
it can designate. This arbitrariness pertains only to symbols; the symbol
tokens and their mutual relations determine what object is designated
by a complex expression. (2) There exist expressions that designate every

292 ALLEN NEWELL and HERBERT A. SIMON

process of which the machine is capable. (3} There exist processes for
creating any expression and for modifying any expression in arbitrary
ways. {4) Expressions are stable; once created they will continue to
exist until explicitly modified or deleted. (5) The number of expressions
that the system can hold is essentially unbounded.

The type of system we have just defined is not unfamiliar to com-
puter scientists. It bears a strong family resemblance to all general pur-
pose computers. If a symbol manipulation langauage, such as LISP, is
taken as defining a machine, then the kinship becomes truly brotherly
Our intent in laying out such a system is not to propose something new.
Just the opposite: it is to show what is now known and hypothesized
about systems that satisfy such a characterization.

We can now state a general scientific hypothesis -- a law of
qualitative structure for symbol systems:

The Physical Symbol System Hypothesis. A physical symbol system
has the necessary and sufficient means for general intelligent action.

By "necessary" we mean that any system that exhibits general in-
telligence will prove upon analysis to be a physical symbol system. By
"sufficient" we mean that any physical symbol system of sufficient size
can be organized further to exhibit general intelligence. By "general
intelligence action" we wish to indicate the same scope of intelligence
as we see in human action: that in any real situation behavior ap-
propriate to the ends of the system and adaptive to the demands of the
environment can occur, within some limits of speed and complexity

The Physical Symbol System Hypothesis clearly is a law of
qualitative structure. It specifies a general class of systems within which
one will find those capable of intelligent action.

This is an empirical hypothesis. We have defined a class of systems;
we wish to ask whether that class accounts for a set of phenomena
we find in the real world. Intelligent action is everywhere around
us in the biological world, mostly in human behavior. It is a form
of behavior we can recognize by its effects whether it is performed
by humans or not. The hypothesis could indeed be false. Intelligent
behavior is not so easy to produce that any system will exhibit it
willynilly Indeed, there are people whose analyses lead them to con-
clude either on philosophical or on scientific grounds that the hypothesis
is false. Scientifically one can attack or defend it only by bringing forth
empirical evidence about the natural world.

We now need to trace the development of this hypothesis and look
at the evidence for it.

1 9 7 5
" l u r i n g
Awa l t i

I,{'¢'lurc

Development of the
Symbol System Hypothesis

A physical symbol system is an instance of a universal machine.
Thus the symbol system hypothesis implies that intelligence will
be realized by a universal computer. However, the hypothesis goes

Computer Science as Empirical Inquiry: Symbols and Search 293

far beyond the argument, often made on general grounds of physical
determinism, that any computation that is realizable can be realized
by a universal machine, provided that it is specified. For it asserts
specifically that the intelligent machine is a symbol system, thus making
a specific architectural assertion about the nature of intelligent systems.
It is important to understand how this additional specificity arose.

Formal Logic. The roots of the hypothesis go back to the program
of Frege and of Whitehead and Russell for formalizing logic: capturing
the basic conceptual notions of mathematics in logic and putting the
notions of proof and deduction on a secure footing. This effort
culminated in mathematical logic--our familiar propositional, first-
order, and higher-order logics. It developed a characteristic view,
often referred to as the "symbol game." Logic, and by incorporation
all of mathematics, was a game played with meaningless tokens accor-
ding to certain purely syntactic rules. All meaning had been purged.
One had a mechanical, though permissive Iwe would now say nondeter-
ministic), system about which various things could be proved. Thus
progress was first made by walking away from all that seemed relevant
to meaning and human symbols. We could call this the stage of formal
symbol manipulation.

This general attitude is well reflected in the development of infor-
mation theory. It was pointed out time and again that Shannon had
defined a system that was useful only for communication and selection,
and which had nothing to do with meaning. Regrets were expressed
that such a general name as "information theory" had been given to
the field, and attempts were made to rechristen it as "the .theory of
selective information"--to no avail, of course.

Turing Machines and the Digital Computer . The development
of the first digital computers and of automata theory, starting with
Turing's own work in the '30s, can be treated together. They agree in
their view of what is essential. Let us use Turing's own model, for it
shows the features well.

A Turing machine consists of two memories: an unbounded tape
and a finite state control. The tape holds data, i.e., the famous zeroes
and ones. The machine has a very small set of proper operations--
read, write, and scan operations--on the tape. The read operation is
not a data operation, but provides conditional branching to a control
state as a function of the data under the read head. As we all know,
this model contains the essentials of all computers, in terms of what
they can do, though other computers with different memories and
operations might carry out the same computations with different
requirements of space and time. In particular, the model of a Turing
machine contains within it the notions both of what cannot be com-
puted and of universal machines--computers that can do anything that
can be done by any machine.

294 ALLEN NEWELL and HERBERT A. SIMON

We should marvel that two of our deepest insights into information
processing were achieved in the thirties, before modern computers
came into being. It is a tr ibute to the genius of Alan Turing. It is
also a tribute to the development of mathematical logic at the time, and
tes t imony to the depth of computer science's obligation to it. Concur-
rently with Turing's work appeared the work of the logicians Emil Post
and {independently) Alonzo Church. Starting from independent notions
of logistic systems (Post product ions and recursive functions, respec-
tively) they arrived at analogous results on undecidabil i ty and
universa l i ty-- resul ts that were soon shown to imply that all three
systems were equivalent. Indeed, the convergence of all these attempts
to define the most general class of information processing systems
provides some of the force of our conviction that we have captured the
essentials of information processing in these models.

In none of these systems is there, on the surface, a concept of the
symbol as something that designates. The data are regarded as just
strings of zeroes and o n e s - - i n d e e d that data be inert is essential to
the reduction of computat ion to physical process. The finite state
control system was always viewed as a small controller, and logical
games were played to see how small a state system could be used
without destroying the universali ty of the machine. No games, as far
as we can tell, were ever played to add new states dynamical ly to the
finite con t ro l - - to think of the control mem o ry as holding the bulk
of the system's knowledge. What was accomplished at this stage was
half the principle of in te rpre ta t ion- -showing that a machine could
be run from a description. Thus, this is the state of automatic formal
symbol manipulation.

'1 u r l n g

Awl i r l l
I,el'lurc

T h e S to red P r o g r a m C o n c e p t . With the development of the
second generation of electronic machines in the mid-forties {after the
Eniac) came the stored program concept. This was rightfully hailed as
a milestone, both conceptual ly and practically. Programs now can be
data, and can be operated on as data. This capability is, of course,
already implicit in the model of 'Ihring: the descriptions are on the very
same tape as the data. Yet the idea was realized only w h en machines
acquired enough memory to make it practicable to locate actual pro-
grams in some internal place. After all, the Eniac had only twenty
registers.

The stored program concept embodies the second half of the inter-
pretat ion principle, the part that says that the system's own data can
be interpreted. But it does not yet contain the notion of designat ion--
of the physical relation that underlies meaning.

List Process ing . The next step, taken in 1956, was list processing.
The contents of the data structures were now symbols, in the sense
of our physical symbol system: patterns that designated, that had
referents. Lists held addresses which permit ted access to other l ists--

Computer Science as Empirical Inquiry: Symbols and Search 295

thus the notion of list structures. That this was a new view was
demonstrated to us many times in the early days of list processing when
colleagues would ask where the data were-- that is, which list finally
held the collections of bits that were the content of the system. They
found it strange that there were no such bits, there were only symbols
that designated yet other symbol structures.

List processing is simultaneously three things in the development
of computer science. (1) It is the creation of a genuine dynamic memory
structure in a machine that had heretofore been perceived as having
fixed structure. It added to our ensemble of operations those that built
and modified structure in addition to those that replaced and changed
content. (2) It was an early demonstration of the basic abstraction that
a computer consists of a set of data types and a set of operations
proper to these data types, so that a computational system should
employ whatever data types are appropriate to the application, indepen-
dent of the underlying machine. (3) List processing produced a model
of designation, thus defining symbol manipulation in the sense in which
we use this concept in computer science today.

As often occurs, the practice of the time already anticipated all
the elements of list processing: addresses are obviously used to gain
access, the drum machines used linked programs (so-called one-plus-
one addressing), and so on. But the conception of list processing as
an abstraction created a new world in which designation and dynamic
symbolic structure were the defining characteristics. The embedding
of the early list processing systems in languages (the IPLs, LISP) is
often decried as having been a barrier to the diffusion of list processing
techniques throughout programming practice; but it was the vehicle
that held the abstraction together.

LISP. One more step is worth noting: McCarthy's creation of
LISP in 1959-60 [McCarthy, 1960]. It completed the act of abstraction,
lifting list structures out of their embedding in concrete machines,
creating a new formal system with S-expressions, which could be
shown to be equivalent to the other universal schemes of computation.

Conclusion. That the concept of the designating symbol and sym-
bol manipulation does not emerge until the mid-fifties does not mean
that the earlier steps were either inessential or less important. The total
concept is the join of computability, physical realizability (and by multi-
ple technologies), universality, the symbolic representation of processes
(i.e., interpretability), and, finally, symbolic structure and designation.
Each of the steps provided an essential part of the whole.

The first step in this chain, authored by Turing, is theoretically
motivated, but the others all have deep empirical roots. We have
been led by the evolution of the computer itself. The stored program
principle arose out of the experience with Eniac. List processing arose
out of the attempt to construct intelligent programs. It took its cue from

296 ALLEN NEWELL and HERBERT A. SIMON

the emergence of random access memories, which provided a clear
physical realization of a designating symbol in the address. LISP arose
out of the evolving experience with list processing.

The Evidence
We come now to the evidence for the hypothesis that physical

symbol systems are capable of intelligent action, and that general
intelligent action calls for a physical symbol system. The hypothesis
is an empirical generalization and not a theorem. We,. know of no
way of demonstrating the connection between symbol systems and
intelligence on purely logical grounds. Lacking such a demonstration,
we must look at the facts. Our central aim, however, is not to review
the evidence in detail, but to use the example before ~s to illustrate
the proposition that computer science is a field of empirical inquiry.
Hence, we will only indicate what kinds of evidence there is, and the
general nature of the testing process.

The notion of physical symbol system had taken essentially its
present form by the middle of the 1950% and one can date from that
time the growth of artificial intelligence as a coherent subfield of
computer science. The twenty years of work since then has seen a
continuous accumulation of empirical evidence of two main varieties.
The first addresses itself to the sufficiency of physical symbol systems
for producing intelligence, attempting to construct and test specific
systems that have such a capability. The second kind of evidence
addresses itself to the necessity of having a physical symbol system
wherever intelligence is exhibited. It starts with Man, the intelligent
system best known to us, and attempts to discover whether his cognitive
activity can be explained as the working of a physical symbol system.
There are other forms of evidence, which we will comment upon briefly
later, but these two are the important ones. We will consider them in
turn. The first is generally called artificial intelligence, the second,
research in cognitive psychology.

Const ruct ing Intel l igent Systems. The basic paradigm for the
initial testing of the germ theory of disease was: identify a disease; then
look for the germ. An analogous paradigm has inspirecl much of the
research in artificial intelligence: identify a task domain calling for
intelligence; then construct a program for a digital computer that can
handle tasks in that domain. The easy and well-structu:red tasks were
looked at first: puzzles and games, operations research problems of
scheduling and allocating resources, simple induction tasks. Scores, if
not hundreds, of programs of these kinds have by now been constructed,
each capable of some measure of intelligent action in the appropriate
domain.

Of course intelligence is not an all-or-none matter, and there has
been steady progress toward higher levels of performance in specific
domains, as well as toward widening the range of those ,domains. Early

I !) 7 5

'1 un'inl~
A W ~ . d
I . l ' (' l l l I'L'

Computer Science as Empirical Inquiry: Symbols and Search 297

chess programs, for example, were deemed successful if they could play
the game legally and with some indication of purpose; a little later, they
reached the level of human beginners; within ten or fifteen years, they
began to compete with serious amateurs. Progress has been slow (and
the total programming effort invested small) but continuous, and the
paradigm of construct-and-test proceeds in a regular cycle -- the whole
research activity mimicking at a macroscopic level the basic generate-
and-test cycle of many of the AI programs.

There is a steadily widening area within which intelligent action
is attainable. From the original tasks, research has extended to building
systems that handle and understand natural language in a variety of
ways, systems for interpreting visual scenes, systems for hand-eye
coordination, systems that design, systems that write computer pro-
grams, systems for speech understanding--the list is, if not endless,
at least very long. If there are limits beyond which the hypothesis will
not carry us, they have not yet become apparent. Up to the present,
the rate of progress has been governed mainly by the rather modest
quantity of scientific resources that have been applied and the inevitable
requirement of a substantial system-building effort for each new major
undertaking.

Much more has been going on, of course, than simply a piling up
of examples of intelligent systems adapted to specific task domains. It
would be surprising and unappealing if it turned out that the AI pro-
grams performing these diverse tasks had nothing in common beyond
their being instances of physical symbol systems. Hence, there has been
great interest in searching for mechanisms possessed of generality, and
for common components among programs performing a variety of tasks.
This search carries the theory beyond the initial symbol system
hypothesis to a more complete characterization of the particular kinds
of symbol systems that are effective in artificial intelligence. In the se-
cond section of the paper, we will discuss one example of a hypothesis
at this second level of specificity: the heuristic search hypothesis.

The search for generality spawned a series of programs designed
to separate out general problem-solving mechanisms from the require-
ments of particular task domains. The General Problem Solver IGPS)
was perhaps the first of these, while among its descendants are such
contemporary systems as PLANNER and CONNIVER. The search for
common components has led to generalized schemes of representation
for goals and plans, methods for constucting discrimination nets, pro-
cedures for the control of tree search, pattern-matching mechanisms,
and language-parsing systems. Experiments are at present under way
to find convenient devices for representing sequences of time and tense,
movement, causality and the like. More and more, it becomes possible
to assemble large intelligent systems in a modular way from such basic
components.

We can gain some perspective on what is going on by turning, again,
to the analogy of the germ theory. If the first burst of research stimulated
by that theory consisted largely in finding the germ to go with each

298 ALLEN NEWELL and HERBERT A. SIMON

disease, subsequent effort turned to learning what a germ was--to
building on the basic qualitative law a new level of structure. In
artificial intelligence, an initial burst of activity aimed at building
intelligent programs for a wide variety of almost randomly selected
tasks is giving way to more sharply targeted research aimed at
understanding the common mechanisms of such systems.

The Modeling of H u m a n Symbolic Behavior. The symbol
system hypothesis implies that the symbolic behavior of man arises
because he has the characteristics of a physical symbol system. Hence,
the results of efforts to model human behavior with symbol systems
become an important part of the evidence for the hypothesis, and
research in artificial intelligence goes on in close collaboration with
research in information processing psychology, as it is usually called.

The search for explanations of man's intelligent behavior in terms
of symbol systems has had a large measure of success over the past
twenty years, to the point where information processing theory is
the leading contemporary point of view in cognitive psychology.
Especially in the areas of problem solving, concept attainment, and
long-term memory, symbol manipulation models now dominate the
scene.

Research in information processing psychology involves two main
kinds of empirical activity. The first is the conduct of observations and
experiments on human behavior in tasks requiring intelligence. The
second, very similar to the parallel activity in artificial intelligence, is
the programming of symbol systems to model the observed human
behavior. The psychological observations and experiments lead to the
formulation of hypotheses about the symbolic processe.s the subjects
are using, and these are an important source of the ideas that go
into the construction of the programs. Thus, many of the ideas for
the basic mechanisms of GPS were derived from careful analysis of
the protocols that human subjects produced while thinking aloud
during the performance of a problem-solving task.

The empirical character of computer science is nowhere more
evident than in this alliance with psychology. Not only are psychological
experiments required to test the veridicality of the simulation models
as explanations of the human behavior, but out of the experiments come
new ideas for the design and construction of physical symbol systems.

Other Evidence. The principal body of evidence for the symbol
system hypothesis that we have not considered is negative evidence:
the absence of specific competing hypotheses as to how intelligent
activity might be accomplished--whether by man or machine. Most
attempts to build such hypotheses have taken place within the field
of psychology. Here we have had a continuum of theories from the
points of view usually labeled "behaviorism" to those usually labeled
"Gestalt theory." Neither of these points of view stands as a real
competitor to the symbol system hypothesis, and this for two reasons.
First, neither behaviorism nor Gestalt theory had demonstrated, or even

1 9 7 5
' l l iring
Award
I , l ' { I I I I ' { '

Compute r Science as Empirical Inquiry: Symbols and Search 299

shown how to demonstrate, that the explanatory mechanisms it
postulates are sufficient to account for intelligent behavior in complex
tasks. Second, neither theory has been formulated with anything like
the specificity of artificial programs. As a matter of fact, the alternative
theories are sufficiently vague so that it is not terribly difficult to give
them information processing interpretations, and thereby assimilate
them to the symbol system hypothesis.

C o n c l u s i o n
We have tried to use the example of the Physical Symbol System

Hypothesis to illustrate concretely that computer science is a scientific
enterprise in the usual meaning of that term: that it develops scientific
hypotheses which it then seeks to verify by empirical inquiry. We had
a second reason, however, for choosing this particular example to illus-
trate our point. The Physical Symbol System Hypothesis is itself a
substantial scientific hypothesis of the kind that we earlier dubbed "laws
of qualitative structure." It represents an important discovery of com-
puter science, which if borne out by the empirical evidence, as in fact
appears to be occurring, will have major continuing impact on the field.

We turn now to a second example, the role of search in intelligence.
This topic and the particular hypothesis about it that we shall examine
have also played a central role in computer science, in general, and
artificial intelligence, in particular.

II
Heurist ic Search

Knowing that physical symbol systems provide the matrix for
intelligent action does not tell us how they accomplish this. Our second
example of a law of qualitative structure in computer science addresses
this latter question, asserting that symbol systems solve problems by
using the processes of heuristic search. This generalization, like the
previous one, rests on empirical evidence, and has not been derived
formally from other premises. However, we shall see in a moment that
it does have some logical connection with the symbol system hypothesis,
and perhaps we can look forward to formalization of the connection
at some time in the future. Until that time arrives, our story must again
be one of empirical inquiry. We will describe what is known about
heuristic search and review the empirical findings that show how it
enables action to be intelligent. We begin by stating this law of
qualitative structure, the Heuristic Search Hypothesis.

Heuristic Search Hypothesis. The solutions to problems are
represented as symbol structures. A physical symbol system exer-
cises its intelligence in problem solving by search--that is, by
generating and progressively modifying symbol structures until it
produces a solution structure.

300 ALLEN NEWELL and HERBERT A. SIMON

Physical symbol systems must use heuristic search to solve problems
because such systems have limited processing resources; in a finite
number of steps, and over a finite interval of time, they can execute
only a finite number of processes. Of course that is not a very strong
limitation, for all universal Turing machines suffer from. it. We intend
the limitation, however, in a stronger sense: we mean practically limited.
We can conceive of systems that are not limited in a practical way,
but are capable, for example, of searching in parallel the nodes of
an exponentially expanding tree at a constant rate for each unit advance
in depth. We will not be concerned here with such systems, but
with systems whose computing resources are scarce relative to the
complexity of the situations with which they are confronted. The
restriction will not exclude any real symbol systems, in computer or
man, in the context of real tasks. The fact of limited resources allows
us, for most purposes, to view a symbol system as the, ugh it were a
serial, one-process-at-a-time device. If it can accomplish only a small
amount of processing in any short time interval, then we might as well
regard it as doing things one at a time. Thus "limited resource symbol
system" and "serial symbol system" are practically synonymous. The
problem of allocating a scarce resource from moment to moment can
usually be treated, if the moment is short enough, as a problem of
scheduling a serial machine.

Problem Solving
Since ability to solve problems is generally taken as a prime indicator

that a system has intelligence, it is natural that much of the history of
artificial intelligence is taken up with attempts to build and under-
stand problem-solving systems. Problem solving has been discussed by
philosophers and psychologists for two millenia, in discourses dense
with the sense of mystery. If you think there is nothing problematic
or mysterious about a symbol system solving problems, then you are
a child of today, whose views have been formed since mid-century. Plato
(and, by his account, Socrates) found difficulty understanding even how
problems could be entertained, much less how they could be solved.
Let me remind you of how he posed the conundrum i.n the Meno:

Meno: And how will you inquire, Socrates, into that which you know not? Wha t
will you put forth as the subject of inquiry? And if you find what you want, how
will you ever know that this is wha t you did not know?

To deal with this puzzle, Plato invented his famous theory of recollec-
tion: when you think you are discovering or learning something, you
are really just recalling what you already knew in a previous existence.
If you find this explanation preposterous, there is a much simpler one
available today, based upon our understanding of symbol systems. An
approximate statement of it is:

To state a p rob lem is to designate (11 a test for a class of symbo l s t ructures
(solutions of the problem), and (2) a generator of symbol s t ruc tures (potential
solut ions I. To solve a p rob lem is to generate a structure, us ing (2), that satisfies
the test of (1).

Compute r Science as Empirical Inquiry: Symbols and Search 301

We have a problem if we know what we want to do (the test), and
if we don't know immediately how to do it (our generator does not
immediately produce a symbol structure satisfying the test). A symbol
system can state and solve problems (sometimes) because it can generate
and test.

If that is all there is to problem solving, why not simply generate
at once an expression that satisfies the test? This is, in fact, what we
do when we wish and dream. "If wishes were horses, beggars might
ride." But outside the world of dreams, it isn't possible. To know how
we would test something, once constructed, does not mean that we
know how to construct i t - - that we have any generator for doing so.

For example, it is well known what it means to "solve" the problem
of playing winning chess. A simple test exists for noticing winning
positions, the test for checkmate of the enemy King. In the world of
dreams one simply generates a strategy that leads to checkmate for all
counter strategies of the opponent. Alas, no generator that will do this
is known to existing symbol systems (man or machine). Instead, good
moves in chess are sought by generating various alternatives,
and painstakingly evaluating them with the use of approximate, and
often erroneous, measures that are supposed to indicate the likelihood
that a particular line of play is on the route to a winning position.
Move generators there are; winning move generators there are not.

Before there can be a move generator for a problem, there must
be a problem space: a space of symbol structures in which problem
situations, including the initial and goal situations, can be represented.
Move generators are processes for modifying one situation in the
problem space into another. The basic characteristics of physical
symbol systems guarantee that they can represent problem spaces and
that they possess move generators. How, in any concrete situation they
synthesize a problem space and move generators appropriate to that
situation is a question that is still very much on the frontier of artificial
intelligence research.

The task that a symbol system is faced with, then, when it is
presented with a problem and a problem space, is to use its limited
processing resources to generate possible solutions, one after another,
until it finds one that satisfies the problem-defining test. If the system
had some control over the order in which potential solutions were
generated, then it would be desirable to arrange this order of genera-
tion so that actual solutions would have a high likelihood of appearing
early. A symbol system would exhibit intelligence to the extent that
it succeeded in doing this. Intelligence for a system with limited
processing resources consists in making wise choices of what to do next.

Search in Problem Solving
During the first decade or so of artificial intelligence research, the

study of problem solving was almost synonymous with the study of
search processes. From our characterization of problems and problem
solving, it is easy to see why this was so. In fact, it might be asked

302 ALLEN NEWELL and HERBERT A. SIMON

whether it could be otherwise. But before we try to answer that
question, we must explore fu::ther the nature of search processes as
it revealed itself during that decade of activity.

I ~) 7 5

'1 u r i l l g

A w a r d

I,et'lurt"

Extracting Information Jfrom the Problem Space. Consider a
set of symbol structures, some small subset of which are solutions to
a given problem. Suppose, further, that the solutions are distributed
randomly through the entire set. By this we mean that no information
exists that would enable any search generator to perform better than
a random search. Then no symbol system could exhibit more intel-
ligence (or less intelligence) than any other in solving the problem,
although one might experienc, e better luck than another.

A condition, then, for the appearance of intelligence is that the
distribution of solutions be not entirely random, that the space of
symbol structures exhibit at least some degree of order and pattern.
A second condition is that pattern in the space of symbol structures
be more or less detectable. A third condition is that the generator of
potential solutions be able to behave differentially, depending on what
pattern it detected. There must be information in the problem space,
and the symbol system must be capable of extracting and using it. Let
us look first at a very simple example, where the intelligence is easy
to come by.

Consider the problem of solving a simple algebraic equation:

A X + B = CX + D

The test defines a solution as any expression of the form, X = E, such
that A E + B = CE + D. Now one could use as generator any process
that would produce numbers ~hich could then be tested by substituting
in the latter equation. We would not call this an intelligent generator.

Alternatively, one could use generators that would make use of the
fact that the original equation can be modified--by adding or subtract-
ing equal quantities from both sides, or multiplying or dividing both
sides by the same quantity--without changing its solutions. But, of
course, we can obtain even more information to guide the generator
by comparing the original expression with the form of the solution, and
making precisely those changes in the equation that leave its solution
unchanged, while at the same time, bringing it into the desired form.
Such a generator could notice that there was an unwanted CX on the
right-hand side of the original equation, subtract it from both sides and
collect terms again. It could then notice that there was an unwanted
B on the left-hand side and subtract that. Finally, it could get rid of the
unwanted coefficient (A - C) on the left-hand side by dividing.

Thus by this procedure, which now exhibits considerable in-
telligence, the generator produces successive symbol structures, each
obtained by modifying the previous one; and the modifications are
aimed at reducing the differences between the form of the input
structure and the form of the test expression, while maintaining the
other conditions for a so lu t io l

Computer Science as Empirical Inquiry: Symbols and Search 303

This simple example already illustrates many of the main
mechanisms that are used by symbol systems for intelligent problem
solving. First, each successive expression is not generated indepen-
dently, but is produced by modifying one produced previously. Second,
the modifications are not haphazard, but depend upon two kinds of
information. They depend on information that is constant over this
whole class of algebra problems, and that is built into the structure of
the generator itself: all modifications of expressions must leave the
equation's solution unchanged. They also depend on information that
changes at each step: detection of the differences in form that remain
between the current expression and the desired expression. In effect,
the generator incorporates some of the tests the solution must satisfy,
so that expressions that don't meet these tests will never be generated.
Using the first kind of information guarantees that only a tiny subset
of all possible expressions is actually generated, but without losing
the solution expression from this subset. Using the second kind of
information arrives at the desired solution by a succession of approxima-
tions, employing a simple form of means-ends analysis to give direction
to the search.

There is no mystery where the information that guided the search
came from. We need not follow Plato in endowing the symbol system
with a previous existence in which it already knew the solution. A
moderately sophisticated generator-test system did the trick without
invoking reincarnation.

Search Trees. The simple algebra problem may seem an unusual,
even pathological, example of search. It is certainly not trial-and-error
search, for though there were a few trials, there was no error. We
are more accustomed to thinking of problem-solving search as
generating lushly branching trees of partial solution possibilities which
may grow to thousands, or even millions, of branches, before they yield
a solution. Thus, if from each expression it produces, the generator
creates B new branches, then the tree will grow as BD. where D is its
depth. The tree grown for the algebra problem had the peculiarity that
its branchiness, B, equaled unity.

Programs that play chess typically grow broad search trees, amount-
ing in some cases to a million branches or more. (Although this
example will serve to illustrate our points about tree search, we should
note that the purpose of search in chess is not to generate proposed
solutions, but to evaluate (test) them.) One line of research into game-
playing programs has been centrally concerned with improving the
representation of the chess board, and the processes for making moves
on it, so as to speed up search and make it possible to search larger
trees. The rationale for this direction, of course, is that the deeper
the dynamic search, the more accurate should be the evaluations
at the end of it. On the other hand, there is good empirical evidence
that the strongest human players, grandmasters, seldom explore trees

304 ALLEN NEWELL and HERBERT A. SIMON

of more than one hundred branches. This economy is achieved not
so much by searching less deeply than do chess-playing programs,
but by branching very sparsely and selectively at each node. This
is only possible, without causing a deterioration of the evaluations,
by having more of the selectivity built into the generator itself, so
that it is able to select for generation just those branches that are
very likely to yield important relevant information about the position.

The somewhat paradoxical-sounding conclusion to which this
discussion leads is that search--successive generation of potential
solution structures--is a fundamental aspect of a symbol system's
exercise of intelligence in problem solving but that amount of search
is not a measure of the amount of intelligence being exhibited. What
makes a problem a problem is not that a large amount of search is
required for its solution, but that a large amount would be required if
a requisite level of intelligence were not applied. When the symbolic
system that is endeavoring to solve a problem knows enough about what
to do, it simply proceeds directly towards its goal; but whenever its
knowledge becomes inadequate, when it enters terra incognita, it is
faced with the threat of going through large amounts of search before
it finds its way again.

The potential for the exponential explosion of the search tree that
is present in every scheme for generating problem solutions warns us
against depending on the brute force of computers--even the biggest
and fastest computers--as a compensation for the ignorance and
unselectivity of their generators. The hope is still periodically ignited
in some human breasts that a computer can be found that is fast enough,
and that can be programmed cleverly enough, to play good chess by
brute-force search. There is nothing known in theory about the game
of chess that rules out this possibility. Empirical studies on the manage-
ment of search in sizable trees with only modest results make this a
much less promising direction than it was when chess was first chosen
as an appropriate task for artificial intelligence. We must regard this
as one of the important empirical findings of research with chess
programs.

] ~) 7 5

'luring

l~c~'lurL'

The Forms of Intelligence. The task of intelligence, then, is to
avert the ever-present threat of the exponential explosion of search.
How can this be accomplished? The first route, already illustrated
by the algebra example, and by chess programs that only generate
"plausible" moves for further analysis, is to build selectivity into the
generator: to generate only structures that show promise of being
solutions or of being along the path toward solutions. The usual
consequence of doing this is to decrease the rate of branching, not
to prevent it entirely. Ultimate exponential explosion is not avoided--
save in exceptionally highly structured situations like the algebra
example-- but only postponed. Hence, an intelligent system generally

Computer Science as Empirical Inquiry: Symbols and Search 305

needs to supplement the selectivity of its solution generator with other
information-using techniques to guide search.

Twenty years of experience with managing tree search in a variety
of task environments has produced a small kit of general techniques
which is part of the equipment of every researcher in artificial intel-
ligence today. Since these techniques have been described in general
works like that of Nilsson [1971], they can be summarized very briefly
here.

In serial heuristic search, the basic question always is: what shall
be done next? In tree search, that question, in turn, has two components:
(1) from what node in the tree shall we search next, and [21 what
direction shall we take from that node? Information helpful in answering
the first question may be interpreted as measuring the relative distance
of different nodes from the goal. Best-first search calls for searching
next from the node that appears closest to the goal. Information helpful
in answering the second question--in what direction to search--is
often obtained, as in the algebra example, by detecting specific dif-
ferences between the current nodal structure and the goal structure
described by the test of a solution, and selecting actions that are
relevant to reducing these particular kinds of differences. This is the
technique known as means-ends analysis, which plays a central role
in the structure of the General Problem Solver.

The importance of empirical studies as a source of general ideas
in AI research can be demonstrated clearly by tracing the history,
through large numbers of problem-solving programs, of these two
central ideas: best-first search and means-ends analysis. Rudiments
of best-first search were already present, though unnamed, in the Logic
Theorist in 1955. The General Problem Solver, embodying means-ends
analysis, appeared about 1957--but combined it with modified depth-
first search rather than best-first search. Chess programs were generally
wedded, for reasons of economy of memory, to depth-first search,
supplemented after about 1958 by the powerful alpha-beta pruning
procedure. Each of these techniques appears to have been reinvented
a number of times, and it is hard to find general, task-independent
theoretical discussions of problem solving in terms of these concepts
until the middle or late 1960's. The amount of formal buttressing
they have received from mathematical theory is still miniscule: some
theorems about the reduction in search that can be secured from
using the alpha-beta heuristic, a couple of theorems (reviewed by
Nilsson [1971]) about shortest-path search, and some very recent
theorems on best-first search with a probabilistic evaluation function.

"Weak" and "Strong" Methods. The techniques we have been
discussing are dedicated to the control of exponential expansion rather
than its prevention. For this reason, they have been properly called
"weak methods" -- methods to be used when the symbol system's
knowledge or the amount of structure actually contained in the problem

306 ALLEN NEWELL and HERBERT A. SIMON

space is inadequate to permit search to be avoided entirely. It is
instructive to contrast a highly structured situation, which can be
formulated, say, as a linear programming problem, with the less struc-
tured situations of combinatorial problems like the traveling salesman
problem or scheduling problems. ("Less structured" here refers to the
insufficiency or nonexistence of relevant theory about the structure of
the problem space.}

In solving linear programming problems, a substantial amount of
computation may be required, but the search does not branch. Every
step is a step along the way to a solution. In solving combinatorial
problems or in proving theorems, tree search can seldom be avoided,
and success depends on heuristic search methods of the sort we have
been describing.

Not all streams of AI problem-solving research have followed the
path we have been outlining. An example of a somewhat different
point is provided by the work on theorem-proving systems. Here, ideas
imported from mathematics and logic have had a strong influence
on the direction of inquiry. For example, the use of heuristics was
resisted when properties of completeness could not be proved {a bit
ironic, since most interesting mathematical systems are known to
be undecidable). Since completeness can seldom be proved for best-
first search heuristics, or for many kinds of selective generators, the
effect of this requirement was rather inhibiting. When theorem-proving
programs were continually incapacitated by the combinatorial explo-
sion of their search trees, thought began to be given to selective
heuristics, which in many cases proved to be analogues of heuristics
used in general problem-solving programs. The set-of-support heuristic,
for example, is a form of working backwards, adapted to the resolu-
tion theorem-proving environment.

1 9 7 ~
*l un ' ing
Awii r t l
I~eclui'c

A S u m m a r y of the Experience. We have now described the
workings of our second law of qualitative structure, which asserts that
physical symbol systems solve problems by means of heuristic search.
Beyond that, we have examined some subsidiary characteristics of
heuristic search, in particular the threat that it always faces of exponen-
tial explosion of the search tree, and some of the means it uses to avert
that threat. Opinions differ as to how effective heuristic search has been
as a problem-solving mechanism--the opinions depending on what task
domains are considered and what criterion of adequacy is adopted:
Success can be guaranteed by setting aspiration levels low--or failure
by setting them high. The evidence might be summed up about as
follows. Few programs are solving problems at "expert" professional
levels. Samuel's checker program and Feigenbaum and Ledergerg's
DENDRAL are perhaps the best-known exceptions, but one could point
also to a number of heuristic search programs for such operations
research problem domains as scheduling and integer programming.

Computer Science as Empirical Inquiry: Symbols and Search 307

In a number of domains, programs perform at the level of competent
amateurs: chess, some theorem-proving domains, many kinds of games
and puzzles. Human levels have not yet been nearly reached by pro-
grams that have a complex perceptual "front end": visual scene
recognizers, speech understanders, robots that have to maneuver in real
space and time. Nevertheless, impressive progress has been made, and
a large body of experience assembled about these difficult tasks.

We do not have deep theoretical explanations for the particular pat-
tern of performance that has emerged. On empirical grounds, however,
we might draw two conclusions. First, from what has been learned
about human expert performance in tasks like chess, it is likely that
any system capable of matching that performance will have to have
access, in its memories, to very large stores of semantic information.
Second, some part of the human superiority in tasks with a large percep-
tual component can be attributed to the special-purpose built-in parallel
processing structure of the human eye and ear.

In any case, the quality of performance must necessarily depend
on the characteristics both of the problem domains and of the symbol
systems used to tackle them. For most real-life domains in which we
are interested, the domain structure has not proved sufficiently simple
to yield [so far I theorems about complexity, or to tell us, other than em-
pirically, how large real-world problems are in relation to the abilities
of our symbol systems to solve them. That situation may change, but
until it does, we must rely upon empirical explorations, using the best
problem solvers we know how to build, as a principal source of
knowledge about the magnitude and characteristics of problem diffi-
culty. Even in highly structured areas like linear programming, theory
has been much more useful in strengthening the heuristics that underlie
the most powerful solution algorithms than in providing a deep analysis
of complexity.

Intelligence Wi thout Much Search
Our analysis of intelligence equated it with ability to extract and

use information about the structure of the problem space, so as to
enable a problem solution to be generated as quickly and directly
as possible. New directions for improving the problem-solving
capabilities of symbol systems can be equated, then, with new ways
of extracting and using information. At least three such ways can be
identified.

Nonlocal Use of Informat ion . First, it has been noted by several
investigators that information gathered in the course of tree search
is usually only used locally, to help make decisions at the specific node
where the information was generated. Information about a chess
position, obtained by dynamic analysis of a subtree of continuations,
is usually used to evaluate just that position, not to evaluate other
positions that may contain many of the same features. Hence, the same

308 ALLEN NEWELL and HERBERT A. SIMON

facts have to be rediscovered repeatedly at different nodes of the search
tree. Simply to take the information out of the context in which it arose
and use it generally does not solve the problem, for the information
may be valid only in a limited range of contexts. In recent years, a
few exploratory efforts have been made to transport information from
its context of origin to other appropriate contexts. While it is still
too early to evaluate the power of this idea, or even exactly how it
is to be achieved, it shows considerable promise. An important line of
investigation that Berliner [1975] has been pursuing is to use causal
analysis to determine the range over which a particular piece of in-
formation is valid. Thus if a weakness in a chess position can be traced
back to the move that made it, then the same weakness can be expected
in other positions descendant from the same move.

The HEARSAY speech understanding system has taken another
approach to making information globally available. That system seeks
to recognize speech strings by pursuing a parallel search at a number
of different levels: phonemic, lexical, syntactic, and semantic. As each
of these searches provides and evaluates hypotheses, it supplies the
information it has gained to a common "blackboard" that can be read
by all the sources. This shared information can be used, for example,
to eliminate hypotheses, or even whole classes of hypotheses, that
would otherwise have to be searched by one of the processes. Thus,
increasing our ability to use tree-search information nonlocally offers
promise for raising the intelligence of problem-solving systems.

I ! } 7 . 5

' l l l r l n g
A~'urd
I,(' [hlre

Semantic Recognit ion Systems. A second active possibility for
raising intelligence is to supply the symbol system with a rich body
of semantic information about the task domain it is dealing with.
For example, empirical research on the skill of chess masters shows
that a major source of the master's skill is stored information that
enables him to recognize a large number of specific features and
patterns of features on a chess board, and information that uses this
recognition to propose actions appropriate to the features recognized.
This general idea has, of course, been incorporated in chess programs
almost from the beginning. What is new is the realization of the number
of such patterns and associated information that may have to be stored
for master-level play: something of the order of 50,000.

The possibility of substituting recognition for search arises because
a particular, and especially a rare, pattern can contain an enormous
amount of information, provided that it is closely linked to the struc-
ture of the problem space. When that structure is "irregular," and
not subject to simple mathematical description, then knowledge of a
large number of relevant patterns may be the key to intelligent behavior.
Whether this is so in any particular task domain is a question more
easily settled by empirical investigation than by theory. Our experience
with symbol systems richly endowed with semantic information and
pattern-recognizing capabilities for accessing it is still extremely limited.

Computer Science as Empirical Inquiry: Symbols and Search 309

The discussion above refers specifically to semantic information
associated with a recognition system. Of course, there is also a whole
large area of AI research on semantic information processing and the
organization of semantic information of semantic memories that falls
outside the scope of the topics we are discussing in this paper.

Selecting Appropriate Representat ions. A third line of inquiry
is concerned with the possibility that search can be reduced or avoided
by selecting an appropriate problem space. A standard example that
illustrates this possibility dramatically is the mutilated checkerboard
problem. A standard 64 square checkerboard can be covered exactly
with 32 tiles, each 1 x 2 rectangle covering exactly two squares. Suppose,
now, that we cut off squares at two diagonally opposite corners of the
checkerboard, leaving a total of 62 squares. Can this mutilated board
be covered exactly with 31 tiles? With (literally} heavenly patience, the
impossibility of achieving such a covering can be demonstrated by
trying all possible arrangements. The alternative, for those with less
patience, and more intelligence, is to observe that the two diagonally
opposite corners of a checkerboard are of the same color. Hence, the
mutilated checkerboard has two less squares of one color than of the
other. But each tile covers one square of one color and one square of
the other, and any set of tiles must cover the same number of squares
of each color. Hence, there is no solution. How can a symbol system
discover this simple inductive argument as an alternative to a hopeless
attempt to solve the problem by search among all possible coverings?
We would award a system that found the solution high marks for
intelligence.

Perhaps, however, in posing this problem we are not escaping from
search processes. We have simply displaced the search from a space
of possible problem solutions to a space of possible representations.
In any event, the whole process of moving from one representation to
another, and of discovering and evaluating representations, is largely
unexplored territory in the domain of problem-solving research. The
laws of qualitative structure governing representations remain to be
discovered. The search for them is almost sure to receive considerable
attention in the coming decade.

C o n c l u s i o n
That is our account of symbol systems and intelligence. It has

been a long road from Plato's Meno to the present, but it is perhaps
encouraging that most of the progress along that road has been made
since the turn of the twentieth century, and a large fraction of it since
the midpoint of the century. Thought was still wholly intangible and
ineffable until modern formal logic interpreted it as the manipulation
of formal tokens. And it seemed still to inhabit mainly the heaven of
Platonic ideals, or the equally obscure spaces of the human mind,
until computers taught us how symbols could be processed by
machines. A. M. Turing, whom we memorialize this morning, made

310 ALLEN NEWELL and HERBERT A. SIMON

his great contributions at the mid-century crossroads of these
developments that led from modern logic to the computer.

I 9 7 5
' l ,, r i , i ~

A w a r d
I ¢~('1 i i i ' t ,

Physical Symbol Systems. The study of logic and computers has
revealed to us that intelligence resides in physical symbol systems. This
is computer sciences's most basic law of qualitative structure.

Symbol systems are collections of patterns and processes, the latter
being capable of producing, destroying and modifying the former. The
most important properties of patterns is that they can designate objects,
processes, or other patterns, and that, when they designate processes,
they can be interpreted. Interpretation means carrying out the
designated process. The two most significant classes of symbol systems
with which we are acquainted are human beings and computers.

Our present understanding of symbol systems grew, as indicated
earlier, through a sequence of stages. Formal logic familiarized us
with symbols, treated syntactically, as the raw material of thought,
and with the idea of manipulating them according to carefully defined
formal processes. The Turing machine made the syntactic processing
of symbols truly machine-like, and affirmed the potential universality
of strictly defined symbol systems. The stored-program concept for
computers reaffirmed the interpretability of symbols, already implicit
in the Turing machine. List processing brought to the forefront the
denotational capacities of symbols, and defined symbol processing
in ways that allowed independence from the fixed structure of the
underlying physical machine. By 1956 all of these concepts were
available, together with hardware for implementing them. The study
of the intelligence of symbol systems, the subject of artificial intel-
ligence, could begin.

Heurist ic Search. A second law of qualitative structure for AI is
that symbol systems solve problems by generating potential solutions
and testing them, that is, by searching. Solutions are usually sought by
creating symbolic expressions and modifying them sequentially until
they satisfy the conditions for a solution. Hence symbol systems solve
problems by searching. Since they have finite resources, the search
cannot be carried out all at once, but must be sequential. It leaves behind
it either a single path from starting point to goal or, if correction and
backup are necessary, a whole tree of such paths.

Symbol systems cannot appear intelligent when they are surrounded
by pure chaos. They exercise intelligence by extracting information from
a problem domain and using that information to guide their search,
avoiding wrong turns and circuitous bypaths. The problem domain must
contain information, that is, some degree of order and structure, for
the method to work. The paradox of the Meno is solved by the observa-
tion that information may be remembered, but new information may
also be extracted from the domain that the symbols designate. In both
cases, the ultimate source of the information is the task domain.

Compute r Science as Empirical Inquiry: Symbols and Search 311

The Empir ical Base. Artificial intelligence research is concerned
with how symbol systems must be organized in order to behave
intelligently. Twenty years of work in the areas has accumulated a
considerable body of knowledge, enough to fill several books {it already
has), and most of it in the form of rather concrete experience about
the behavior of specific classes of symbol systems in specific task
domains. Out of this experience, however, there have also emerged
some generalizations, cutting across task domains and systems, about
the general characteristics of intelligence and its methods of
implementation.

We have tried to state some of these generalizations this morning.
They are mostly qualitative rather than mathematical. They have more
the flavor of geology or evolutionary biology than the flavor of
theoretical physics. They are sufficiently strong to enable us today to
design and build moderately intelligent systems for a considerable range
of task domains, as well as to gain a rather deep understanding of how
human intelligence worked in many situations.

What Next? In our account today, we have mentioned open ques-
tions as well as settled ones; there are many of both. We see no abate-
ment of the excitement of exploration that has surrounded this field
over the past quarter century. Two resource limits will determine
the rate of progress over the next such period. One is the amount of
computing power that will be available. The second, and probably the
more important, is the number of talented young computer scientists
who will be attracted to this area of research as the most challenging
they can tackle.

A. M. Turing concluded his famous paper on "Computing Machinery
and Intelligence" with the words:

"We can only see a short distance ahead, but we can see p len ty there that needs
to be done."

Many of the things Turing saw in 1950 that needed to be done
have been done, but the agenda is as full as ever. Perhaps we read
too much into his simple statement above, but we like to think that
in it Turing recognized the fundamental truth that all computer scien-
tists instinctively know. For all physical symbol systems, condemned
as we are to serial search of the problem environment, the critical
question is always: What to do next?

Acknowledgment
The authors' research over the years have been supported in part by
the Advanced Research Projects Agency of the Department of Defense
Imonitored by the Air Force Office of Scientific Research} and in part
by the National Institutes of Mental Health.

312 ALLEN NEWELL and HERBERT A. SIMON

References
Berliner, H. [1975]. Chess as problem solving: the development of a tactics
analyzer. Ph.D. Th., Computer Sci. Dep., Carnegie-Mellon U. {unpublished).

McCarthy, J. [1960]. Recursive functions of symbolic expressions and their
computation by machine. Comm. ACM 3, 4 (April 1960), 184-195.

McCulloch, W.S. [1961]. What is a number, that a man may know it, and
a man, that he may know a number. General Semantics Bulletin, Nos. 26 and
27 (1961}, 7-18.

Nilsson, N.J. [1971]. Problem Solving Methods in Artificial Intelligence. McGraw-
Hill, New York.

Turing, A.M. [1950]. Computing machinery and intelligence. Mind 59 (Oct.
1950), 433-460.

Categories and Subject Descriptors:
E.1 [Data]: Data Structures--lists; F.I.1 [Computat ion by Abstract
Devices]: Models of Computation--bounded-action devices; 1.2.7 [Artificial
Intelligence]: Natural Language Processing--speech recognition and
understanding; 1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search --graph and tree search strategies; heuristic methods; K.2
[Computing Milieux]: History of Computing--systems

General Term s :
Design, Theory

Additional Keywords and Phrases:
Integer p rogramming , LISP, list processing

I 9 7 5
'1 u r i n g

| ¢~C|l l i ' t"

Computer Science as Empirical Inquiry: Symbols and Search 313

Postscript
Reflect ions on the

Tenth Turing Award Lecture:
Computer Science

as Empirical Inquiry
Symbols and Search

ALLEN NEWELL and HERBERT A. SIMON
Department of Computer Science

Department of Psychology
Carnegie -Mel lon University

Pittsburgh, Pennsylvania 15213

Our Turing Award lecture was given in 1975, two decades after the begin-
nings of artificial intelligence in the mid-fifties. Another decade has now
passed. The lecture mostly avoided prophecy and agenda building, choosing
rather to assert a ver i ty-- that computer science is an empirical science. It did
that by looking backward at the development of two general principles that
underlie the theory of intelligent act ion-- the requirements for physical sym-
bol systems and for search. It might be interesting to ask whether the intervening
decade has added to or subtracted from the stance and assessments set forth
then.

A lot has happened in that decade. Both computer science and artificial
intelligence have continued to grow, scientifically, technologically, and
economically. A point implicit but deliberate in the lecture was that artificial
intelligence is a part of computer science, both rising from the same intellectual
ground. Social history has continued to follow logic here {it does not always
do so}, and artificial intelligence continues to be a part of computer science.
If anything, their relations are becoming increasingly intimate as the application
of intelligent systems to software engineering in the guise of expert systems
becomes increasingly attractive.

The main point about empirical inquiry is reflected throughout computer
science. A lot has happened everywhere, but let us focus on artificial intel-
ligence. The explosion of work in expert systems, the developments in learn-
ing systems, and the work on intelligent tutoring provide significant examples
of areas that have blossomed since the lecture (and received no recognition
in it}. All of them have been driven by empirical inquiry in the strongest way.
Even the emergence of the work on logic programming, which is an expres-
sion of the side of artificial intelligence that is most strongly identified with
formal procedures and theorem proving, has attained much of its vitality from
being turned into a programming enterprise--in which, thereby, experience
leads the way.

There have, of course, been significant developments of theory. Particularly
pertinent to the content of our lecture has been work in the complexity analysis
of heuristic search, as exemplified in the recent book by Pearl [10]. But this
too illustrates the standard magic cycle of science, where theory finally builds
up when analyzed experience has sufficiently accumulated. We are still
somewhat shy of closing that cycle by getting theory to the point where it
provides the routine framework within which further experience is planned

314

so that henceforth data and theory go hand in hand. That time will surely come,
although it is still a little distant.

We chose the forum of an award lecture to give voice to two fundamental
principles {about symbols and search} that seemed to us to be common cur-
rency in the practice and understanding of artificial intelligence, but which
needed to be recognized for what they were - - the genuine foundations of
intelligent action. Their histories in the meant ime have been somewhat dif-
ferent, though both remain on paths we interpret as supporting their essential
correctness.

Bringing to the fore the physical symbol system hypothesis has proved useful
to the field, although we did find it worthwhile subsequently to set out the
hypothesis in more detail [7]. The hypothesis is taken rather generally to
express the view of mind that has arisen from the emergence of the computer.
However, that does not mean it is uncontroversial. There remain intellectual
positions that stand outside the entire computational view and regard the
hypothesis as undoubtedly false [3, 11]. More to the point are two other positions.
One is found among the philosophers, many of whom believe that the central
problem of semantics or intentionali ty -- how symbols signify their external
re fe ren t s - - i s not addressed by physical symbol systems. The other position
is found among some of the connectionists within artificial intelligence and
cognitive science, who believe there are forms of processing organization
{wrought in the image of neural systems I that will accomplish all that symbol
systems do, but in which symbols will not be identifiable entities. In both cases
more investigation is clearly needed and will no doubt be forthcoming. The
case for symbols still seems clear to us, so our bets remain on the side of the
symbol system hypothesis.

A development related,to the physical symbol system hypothesis is worth
noting. It is the practice in computer science and artificial intelligence to describe
systems simply in terms of the knowledge they have, presuming that there
exist processing mechanisms that will cause the system to behave as if it could
use the knowledge to attain the purposes the system is supposed to serve. This
practice extends to design, where stipulating the knowledge a system is to have
is a specification for what mechanisms are to be constructed. We took an
opportunity, analogous to that of the Turing Award, namely, the presidential
address of the American Association for Artificial Intelligence (AAAI), to also
cast th ispract ice in crisp terms [8]. We defined another computer-system level
above the symbol level, called the knowledge level. This corresponds pretty
clearly to what Dan Dennett in philosophy had come to call the intentional
stance [2]. Its roots, of course, lie in that remarkable characteristic of adaptive
systems that they behave solely as a function of the task environment, hiding
therewith the nature of their internal mechanisms [9, 12]. Again, our motives
in identifying the knowledge level were the same as in the 'Ihring Award
l ec tu re - - to articulate what every good computer-science practi t ioner knows
in a form that admits further technical expansion. There are some small signs
that this expansion is beginning for the knowledge level [6].

Turning to the second hypothesis, that of heuristic search, recognition of
its importance was explicit and abundant in the early years of artificial
intelligence. Our aim in the 'Ihring Award lecture was to emphasize that search
is essential to all intelligent action, rather than just one interesting mechanism
among many. As it happened, the year of the lecture, 1975, just preceded the
efflorescence of the view that knowledge is of central importance to intelligence.
The trend had been building from the early seventies. The sign of this new
view was the emergence of the field of expert systems and the new role of the
knowledge engineer [4]. The exuberance of this movement can be seen in the
assertion that there had been a paradigm shift in artificial intelligence, which
had finally abandoned search and would henceforth embrace knowledge as
its guiding principle [5].

I ~ 7 5

'1 u r i n g

A~v~Hd

I , e t h H e

Computer Science as Empirical Inquiry: Symbols and Search 315

An alternative interpretation {and the one we hold) is that no revolution
occurred, but something more akin to the cycle of accommodation, assimilation,
and equilibration that Piaget describes as the normal process of development
{although he was talking of children and not scientific fields). Science works
by expanding each new facet of understanding as it emerges--it accommodates
to new understanding by an extended preoccupation to assimilate it. The late
seventies and early eighties were devoted to exploring what it meant for systems
to have enough knowledge about their task to dispense with much search of
the problem space, and yet to do tasks that demanded intelligence, as opposed
to just implementing small algorithms. {As the amount of knowledge increased,
of course, these systems did require search of the rules in the knowledge base.)
Concomitantly, the tasks performed by these systems, although taken from the
real world, were also of little intellectual [i.e., inferential} difficulty. The role
of search in difficult intellectual tasks remained apparent to those who continued
to work on programs to accomplish them-- i t is hard to avoid when the threat
of combinatorial explosion lurks around every corner. Having now assimilated
some of the mechanisms for bringing substantial amounts of knowledge to bear,
the field seems to have reached an understanding that both search and
knowledge play an essential role.

A last reflection concerns chess, which runs like a thread through the whole
lecture, providing {as it always does) clear examples for many points. The
progress of a decade is apparent in the current art, where the Hitech chess
machine [1] has now attained high master ratings (2340, where masters range
from 2200 to 2400}. It is still climbing, although no one knows how long it can
continue to rise. Hitech, itself, illustrates many things. First, it brings home
the role of heuristic search. Second, it is built upon massive search {200,000
positions a second), so that it shows that progress has moved in exactly the
direction we asserted in the lecture to be wrong. It is fun to be wrong, when
the occasion is one of new scientific knowledge. But third, the basic theoretical
lesson from the machine is still the one emphasized in the lecture: namely,
intelligent behavior involves the interplay of knowledge obtained through search
and knowledge obtained from stored recognitional structure. For the last 200
points of Hitech's improvement--and the gains that have propelled it to f a m e -
have come entirely from the addition of knowledge to a machine with fixed,
albeit large, search capabilities. Fourth and finally, the astounding performance
of Hitech and the new phenomena it generates bears witness once more, if
more is needed, that progress in computer science and artificial intelligence
occurs by empirical inquiry.

R e f e r e n c e s

1. Berliner, H., and Ebeling, C. The SUPREM architecture: A new in-
telligent paradigm. Artif. Intell. 28 (1986}.

2. Dennett, D. C. Brainstorms. Bradford/MIT Press, Cambridge, Mass.,
1978.

3. Dreyfus, H. L. What Computers Can't Do: A Critique of Artificial
Reason, 2nd ed. Harper and Row, New York, 1979.

4. Feigenbaum, E. A. The art of artificial intelligence: Themes and
case studies in knowledge engineering. In Proceedings of the 5th In-
ternational Joint Conference on Artificial Intelligence. Computer
Science Dept., Carnegie-Mellon Univ., Pittsburgh, Pa., 1977.

5. Goldstein, I., and Papert, S. Artificial intelligence, language and the
study of knowledge. Cognitive Sci., i (19771, 84-124.

316 ALLEN NEWELL and HERBERT A. SIMON

6. Levesque, H. J. Foundations o f a functional approach to knowledge
representation. Artif. Intell. 23 {1984), 155-212.

7. Newell, A. Physical symbol systems. Cognitive Sci. 4 {1980 I, 135-183.
8. Newell, A. The knowledge level. Artif. Intell. 18 {19821, 87-127.
9. Newell, A., and Simon, H. A. Human Problem Solving. Prentice-Hall,

Englewood Cliffs, N.J., 1972.
10. Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley, Reading, Mass., 1984.
11. Searle, J. Minds, brains and programs. Behav. Brain Sci. 3 (1980),

417-457.
12. Simon, H. A. The Sciences of the Artificial. MIT Press, Cambridge, Mass.,

1969.

Computer Science as Empirical Inquiry: Symbols and Search 317

