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Computer Science 
as Empirical Inquiry: 
Symbols and Search 

A L L E N  N E W E L L  a n d  H E R B E R T  A. S I M O N  

The 1975 ACM Taring Award was presented jointly to Alien Newell and 
Herbert A. Simon at the ACM Annual Conference in Minneapolis, October 
20. In introducing the recipients, Bernard A. Galler, Chairman of the 
Taring Award Committee, read the following citation: 

"It is a privilege to be able to present the ACM Taring Award to two 
friends of long standing, Professors Allen Newell and Herbert A. Simon, both 
of Carnegie-Mellon University. 

"In joint scientific efforts extending over twenty years, initially in 
collaboration with J. C. Shaw at the RAND Corporation, and subsequently 
with numerous faculty and student colleagues at Carnegie-Mellon Univer- 
sity, they have made basic contributions to artificial intelligence, the 
psychology of human cognition, and list processing. 

"In artificial intelligence, they contributed to the establishment of 
the field as an area of scientific endeavor, to the development of heuristic 
programming generally, and of heuristic search, means-ends analysis, 
and methods of induction, in particular, providing demonstrations of 
the sufficiency of these mechanisms to solve interesting problems. 

"In psychology, they were principal instigators of the idea that human 
cognition can be described inn terms of a symbol system, and they have 
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developed detailed theories [or human problem solving, verbal learning and 
inductive behavior in a number of task domains, using computer 
programs embodying these theories to simulate the human behavior. 

"They were apparently the inventors of list processing, and have 
been major contributors to both software technology and the development 
of the concept of the computer as a system of manipulating symbolic 
structures and not just as a processor o[ numerical data. 

"It is an honor for Pro[essors Newell and Simon to be given this award, 
but it is also an honor [or ACM to be able to add their names to our 
list of recipients, since by their presence, they will add to the prestige and 
importance o[ the ACM Taring Award." 

Computer  science is the study of the phenomena  surrounding 
computers. The founders of this society understood this very well when 
they called themselves the Association for Computing Machinery. The 
m a c h i n e - - n o t  just the hardware,  but  the programmed,  living 
mach ine - - i s  the organism we study. 

This is the tenth Turing Lecture. The nine persons who preceded 
us on this platform have presented nine different views of computer  
science, for our organism, the machine, can be studied at many  levels 
and from many  sides. We are deeply honored  to appear  here today and 
to present  yet another  view, the one that has permeated  the scientific 
work for which we have been cited. We wish to speak of computer  
science as empirical inquiry. 

Our view is only one of many; the previous lectures make that clear. 
However, even taken together the lectures fail to cover the whole scope 
of our science. Many fundamenta l  aspects of it have not been 
represented in these ten awards. And if the t ime ever arrives, surely 
not soon, when  the compass has been boxed, when  computer  science 
has been discussed from every  side, it will be t ime to start the cycle 
again. For the hare as lecturer  will have to make an annual  sprint to 
overtake the cumulat ion of small, incremental  gains that the tortoise 
of scientific and technical development  has achieved in his steady 
march. Each year will create a new gap and call for a new sprint, for 
in science there is no final word. 

Computer  science is an empirical discipline. We would have called 
it an experimental  science, but like astronomy, economics, and geology, 
some of its unique forms of observation and experience do not fit 
a nar row stereotype of the experimental  method.  None the less, they 
are experiments.  Each new machine that is built is an experiment.  
Actually constructing the machine  poses a quest ion to nature; and 
we listen for the answer by observing the machine  in operat ion and 
analyzing it by all analytical and measurement  means available. Each 
new program that is built is an experiment. It poses a question to nature, 
and its behavior  offers clues to an answer. Neither  machines  nor 
programs are black boxes; they are artifacts that have been designed, 
both hardware  and software, and we can open them up and look 
inside. We can relate their s tructure to their behavior  and draw many  
lessons from a single experiment.  We don't  have to build 100 copies 
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of, say, a theorem prover, to demonstrate statistically that it has not 
overcome the combinatorial explosion o:: search in the way hoped for. 
Inspection of the program in the light of a few runs reveals the flaw 
and lets us proceed to the next attempt. 

We build computers and programs for many reasons. We build 
them to serve society and as tools for carrying out the economic 
tasks of society. But as basic scientists we build machines and programs 
as a way of discovering new phenomena and analyzing phenomena 
we already know about. Society often becomes confused about this, 
believing that computers and programs are to be constructed only 
for the economic use that can be made of them (or as intermediate 
items in a developmental sequence leading to such use). It needs 
to understand that the phenomena surrounding computers are deep 
and obscure, requiring much experimentation to assess their nature. 
It needs to understand that, as in any science, the gains that accrue 
from such experimentation and understanding pay off in the permanent 
acquisition of new techniques; and that it is these techniques that 
will create the instruments to help society in achieving its goals. 

Our purpose here, however, is not to plead for understanding 
from an outside world. It is to examine one aspect of our science, 
the development of new basic understanding by empirical inquiry. 
This is best done by illustrations. We will be pardoned if, presuming 
upon the occasion, we choose our examples from the area of our 
own research. As will become apparent, these examples involve the 
whole development of artificial intelligence, especially in its early 
years. They rest on much more than our own personal contributions. 
And even where we have made direct contributions, this has been 
done in cooperation with others. Our collaborators have included 
especially Cliff Shaw, with whom we formed a team of three through 
the exciting period of the late fifties. But we have also worked with 
a great many colleagues and students at Carnegie-Mellon University. 

Time permits taking up just two examples. The first is the 
development of the notion of a symbolic system. The second is the 
development of the notion of heuristic search. Both conceptions have 
deep significance for understanding how information is processed 
and how intelligence is achieved. However, they do not come close 
to exhausting the full scope of artificial intelligence, though they seem 
to us to be useful for exhibiting the nature of fundamental knowledge 
in this part of computer science. 
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Symbols and 

Physical Symbol Systems 
One of the fundamental contributions to knowledge of computer 

science has been to explain, at a rather basic level, what symbols are. 
This explanation is a scientific proposition about Nature. It is empirically 
derived, with a long and gradual development. 
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Symbols lie at the root of intelligent action, which is, of course, the 
primary topic of artificial intelligence. For that matter, it is a primary 
question for all of computer science. All information is processed by 
computers in the service of ends, and we measure the intelligence of 
a system by its ability to achieve stated ends in the face of variations, 
difficulties and complexities posed by the task environment. 
This general investment of computer science in attaining intelligence 
is obscured when the tasks being accomplished are limited in scope, 
for then the full variations in the environment can be accurately fore- 
seen. It becomes more obvious as we extend computers to more global, 
complex and knowledge-intensive tasks -- as we attempt to make them 
our agents, capable of handling on their own the full contingencies 
of the natural world. 

Our understanding of the systems requirements for intelligent action 
emerges slowly. It is composite, for no single elementary thing accounts 
for intelligence in all its manifestations. There is no "intelligence 
principle," just as there is no "vital principle" that conveys by its very 
nature the essence of life. But the lack of a simple deus ex machina does 
not imply that there are no structural requirements for intelligence. 
One such requirement is the ability to store and manipulate symbols. 
To put the scientific question, we may paraphrase the title of a famous 
paper by Warren McCulloch [1961]: What is a symbol, that intelligence 
may use it, and intelligence, that it may use a symbol? 

Laws  o f  
Qual i ta t ive  S tructure  

All sciences characterize the essential nature of the systems they 
study. These characterizations are invariably qualitative in nature, for 
they set the terms within which more detailed knowledge can be 
developed. Their essence can often be captured in very short, very 
general statements. One might judge these general laws, due to their 
limited specificity, as making relatively little contribution to the sum 
of a science, were it not for the historical evidence that shows them 
to be results of the greatest importance. 

The Cell Doctrine in Biology. A good example of a law of 
qualitative structure is the cell doctrine in biology, which states that 
the basic building block of all living organisms is the cell. Cells come 
in a large variety of forms, though they all have a nucleus surrounded 
by protoplasm, the whole encased by a membrane. But this internal 
structure was not, historically, part of the specification of the cell 
doctrine; it was subsequent specificity developed by intensive investiga- 
tion. The cell doctrine can be conveyed almost entirely by the statement 
we gave above, along with some vague notions about what size a 
cell can be. The impact of this law on biology, however, has been 
tremendous, and the lost motion in the field prior to its gradual accept- 
ance was considerable. 
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Plate Tectonics in Geology. Geology provides an interesting 
example of a qualitative structure law, interesting because it has 
gained acceptence in the last decade and so its rise in status is still fresh 
in memory. The theory of plate tectonics asserts that the surface of 
the globe is a collection of huge plates--a few dozen in all-- which 
move (at geological speeds} against, over, and under each other into 
the center of the earth, where they lose their identity. The movements 
of the plates account for the shapes and relative locations of the 
continents and oceans, for the areas of volcanic and earthquake activity, 
for the deep sea ridges, and so on. With a few additional particulars 
as to speed and size, the essential theory has been specified. It was 
of course not accepted until it succeeded in explaining a number of 
details, all of which hung together (e.g., accounting for flora, fauna, 
and stratification agreements between West Africa and Northeast South 
America}. The plate tectonics theory is highly qualitative. Now that 
it is accepted, the whole earth seems to offer evidence for it everywhere, 
for we see the world in its terms. 

The Germ Theory of Disease. It is little more than a century since 
Pasteur enunciated the germ theory of disease, a law of qualitative 
structure that produced a revolution in medicine. The theory proposes 
that most diseases are caused by the presence and multiplication in 
the body of tiny single-celled living organisms, and that contagion 
consists in the transmission of these organisms from one host to another. 
A large part of the elaboration of the theory consisted in identifying 
the organisms associated with specific diseases, describing them, and 
tracing their life histories. The fact that the law has many exceptions-- 
that many diseases are not produced by germs--does not detract from 
its importance. The law tells us to look for a particular kind of cause; 
it does not insist that we will always find it. 

The Doctrine of Atomism. The doctrine of atomism offers an 
interesting contrast to the three laws of qualitative structure we have 
just described. As it emerged from the work of Dalton and his 
demonstrations that the chemicals combined in fixed proportions, the 
law provided a typical example of qualitative structure: the elements 
are composed of small, uniform particles, differing from one element 
to another. But because the underlying species of atoms are so simple 
and limited in their variety, quantitative theories were soon formulated 
which assimilated all the general structure in the original qualitative 
hypothesis. With cells, tectonic plates, and germs, the variety of struc- 
ture is so great that the underlying qualitative principle remains 
distinct, and its contribution to the total theory clearly discernible. 

Conclusion: Laws of qualitative structure are seen everywhere 
in science. Some of our greatest scientific discoveries are to be found 
among them. As the examples illustrate, they often set the terms on 
which a whole science operates. 
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Physical Symbol Systems 
Let us return to the topic of symbols, and define a physical symbol 

system. The adjective "physical" denotes two important features: (1) 
Such systems clearly obey the laws of physics--they are realizable by 
engineered systems made of engineered components; (2) although our 
use of the term "symbol" prefigures our intended interpretation, it is 
not restricted to human symbol systems. 

A physical symbol system consists of a set of entities, called symbols, 
which are physical patterns that occur as components of another type 
of entity called an expression (or symbol structure). Thus, a symbol 
structure is composed of a number of instances (or tokens) of symbols 
related in some physical way (such as one token being next to another). 
At any instant of time the system will contain a collection of these 
symbol structures. Besides these structures, the system also contains 
a collection of processes that operate on expressions to produce other 
expressions: processes of creation, modification, reproduction and 
destruction. A physical symbol system is a machine that produces 
through time an evolving collection of symbol structures. Such a system 
exists in a world of objects wider than just these symbolic expressions 
themselves. 

Two notions are central to this structure of expressions, symbols, 
and objects: designation and interpretation. 

Designation. An expression designates an object if, given the expres- 
sion, the system can either affect the object itself or behave in ways 
dependent on the object. 

In either case, access to the object via the expression has been obtained, 
which is the essence of designation. 

Interpretation. The system can interpret an expression if the expres- 
sion designates a process and if, given the expression, the system 
can carry out the process. 

Interpretation implies a special form of dependent action: given an 
expression the system can perform the indicated process, which is to 
say, it can evoke and execute its own processes from expressions that 
designate them. 

A system capable of designation and interpretation, in the sense 
just indicated, must also meet a number of additional requirements, 
of completeness and closure. We will have space only to mention 
these briefly; all of them are important and have far-reaching conse- 
quences. 

(1) A symbol may be used to designate any expression whatsoever. 
That is, given a symbol, it is not prescribed a priori what expressions 
it can designate. This arbitrariness pertains only to symbols; the symbol 
tokens and their mutual relations determine what object is designated 
by a complex expression. (2) There exist expressions that designate every 
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process of which the machine is capable. (3} There exist processes for 
creating any expression and for modifying any expression in arbitrary 
ways. {4) Expressions are stable; once created they will continue to 
exist until explicitly modified or deleted. (5) The number of expressions 
that the system can hold is essentially unbounded. 

The type of system we have just defined is not unfamiliar to com- 
puter scientists. It bears a strong family resemblance to all general pur- 
pose computers. If a symbol manipulation langauage, such as LISP, is 
taken as defining a machine, then the kinship becomes truly brotherly 
Our intent in laying out such a system is not to propose something new. 
Just the opposite: it is to show what is now known and hypothesized 
about systems that satisfy such a characterization. 

We can now state a general scientific hypothesis -- a law of 
qualitative structure for symbol systems: 

The Physical Symbol System Hypothesis. A physical symbol system 
has the necessary and sufficient means for general intelligent action. 

By "necessary" we mean that any system that exhibits general in- 
telligence will prove upon analysis to be a physical symbol system. By 
"sufficient" we mean that any physical symbol system of sufficient size 
can be organized further to exhibit general intelligence. By "general 
intelligence action" we wish to indicate the same scope of intelligence 
as we see in human action: that in any real situation behavior ap- 
propriate to the ends of the system and adaptive to the demands of the 
environment can occur, within some limits of speed and complexity 

The Physical Symbol System Hypothesis clearly is a law of 
qualitative structure. It specifies a general class of systems within which 
one will find those capable of intelligent action. 

This is an empirical hypothesis. We have defined a class of systems; 
we wish to ask whether that class accounts for a set of phenomena 
we find in the real world. Intelligent action is everywhere around 
us in the biological world, mostly in human behavior. It is a form 
of behavior we can recognize by its effects whether it is performed 
by humans or not. The hypothesis could indeed be false. Intelligent 
behavior is not so easy to produce that any system will exhibit it 
willynilly Indeed, there are people whose analyses lead them to con- 
clude either on philosophical or on scientific grounds that the hypothesis 
is false. Scientifically one can attack or defend it only by bringing forth 
empirical evidence about the natural world. 

We now need to trace the development of this hypothesis and look 
at the evidence for it. 
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Development of the 
Symbol System Hypothesis 

A physical symbol system is an instance of a universal machine. 
Thus the symbol system hypothesis implies that intelligence will 
be realized by a universal computer. However, the hypothesis goes 
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far beyond the argument, often made on general grounds of physical 
determinism, that any computation that is realizable can be realized 
by a universal machine, provided that it is specified. For it asserts 
specifically that the intelligent machine is a symbol system, thus making 
a specific architectural assertion about the nature of intelligent systems. 
It is important to understand how this additional specificity arose. 

Formal  Logic. The roots of the hypothesis go back to the program 
of Frege and of Whitehead and Russell for formalizing logic: capturing 
the basic conceptual notions of mathematics in logic and putting the 
notions of proof and deduction on a secure footing. This effort 
culminated in mathematical logic--our familiar propositional, first- 
order, and higher-order logics. It developed a characteristic view, 
often referred to as the "symbol game." Logic, and by incorporation 
all of mathematics, was a game played with meaningless tokens accor- 
ding to certain purely syntactic rules. All meaning had been purged. 
One had a mechanical, though permissive Iwe would now say nondeter- 
ministic), system about which various things could be proved. Thus 
progress was first made by walking away from all that seemed relevant 
to meaning and human symbols. We could call this the stage of formal 
symbol manipulation. 

This general attitude is well reflected in the development of infor- 
mation theory. It was pointed out time and again that Shannon had 
defined a system that was useful only for communication and selection, 
and which had nothing to do with meaning. Regrets were expressed 
that such a general name as "information theory" had been given to 
the field, and attempts were made to rechristen it as "the .theory of 
selective information"--to no avail, of course. 

Turing Machines  and  the  Digital Computer .  The development 
of the first digital computers and of automata theory, starting with 
Turing's own work in the '30s, can be treated together. They agree in 
their view of what is essential. Let us use Turing's own model, for it 
shows the features well. 

A Turing machine consists of two memories: an unbounded tape 
and a finite state control. The tape holds data, i.e., the famous zeroes 
and ones. The machine has a very small set of proper operations-- 
read, write, and scan operations--on the tape. The read operation is 
not a data operation, but provides conditional branching to a control 
state as a function of the data under the read head. As we all know, 
this model contains the essentials of all computers, in terms of what 
they can do, though other computers with different memories and 
operations might carry out the same computations with different 
requirements of space and time. In particular, the model of a Turing 
machine contains within it the notions both of what cannot be com- 
puted and of universal machines--computers that can do anything that 
can be done by any machine. 
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We should marvel  that two of our deepest  insights into information 
processing were achieved in the thirties, before modern  computers  
came into being. It is a tr ibute to the genius of Alan Turing. It is 
also a tribute to the development  of mathematical  logic at the time, and 
tes t imony to the depth of computer  science's obligation to it. Concur- 
rently with Turing's work appeared the work of the logicians Emil Post 
and {independently) Alonzo Church. Starting from independent  notions 
of logistic systems (Post product ions and recursive functions, respec- 
tively) they arrived at analogous results on undecidabil i ty and 
universa l i ty-- resul ts  that were  soon shown to imply that all three 
systems were equivalent. Indeed, the convergence of all these attempts 
to define the most general class of information processing systems 
provides some of the force of our  conviction that we have captured the 
essentials of information processing in these models. 

In none of these systems is there, on the surface, a concept  of the 
symbol as something that designates. The data are regarded as just 
strings of zeroes and o n e s - - i n d e e d  that data be inert is essential to 
the reduction of computat ion to physical process. The finite state 
control system was always viewed as a small controller, and logical 
games were played to see how small a state system could be used 
without  destroying the universali ty of the machine. No games, as far 
as we can tell, were ever played to add new states dynamical ly to the 
finite con t ro l - - to  think of the control mem o ry  as holding the bulk 
of the system's knowledge. What  was accomplished at this stage was 
half the principle of in te rpre ta t ion- -showing  that a machine could 
be run from a description. Thus, this is the state of automatic formal 
symbol manipulation. 
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T h e  S to red  P r o g r a m  C o n c e p t .  With the development  of the 
second generation of electronic machines  in the mid-forties {after the 
Eniac) came the stored program concept. This was rightfully hailed as 
a milestone, both conceptual ly and practically. Programs now can be 
data, and can be operated on as data. This capability is, of course, 
already implicit in the model of 'Ihring: the descriptions are on the very  
same tape as the data. Yet the idea was realized only w h en  machines 
acquired enough memory  to make it practicable to locate actual pro- 
grams in some internal place. After all, the Eniac had only twenty  
registers. 

The stored program concept  embodies the second half of the inter- 
pretat ion principle, the part that says that the system's own data can 
be interpreted. But it does not yet contain the notion of designat ion--  
of the physical relation that underlies meaning. 

List  Process ing .  The next step, taken in 1956, was list processing. 
The contents of the data structures were now symbols, in the sense 
of our physical symbol system: patterns that designated, that had 
referents. Lists held addresses which permit ted  access to other  l ists--  
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thus the notion of list structures. That this was a new view was 
demonstrated to us many times in the early days of list processing when 
colleagues would ask where the data were-- that  is, which list finally 
held the collections of bits that were the content of the system. They 
found it strange that there were no such bits, there were only symbols 
that designated yet other symbol structures. 

List processing is simultaneously three things in the development 
of computer science. (1) It is the creation of a genuine dynamic memory 
structure in a machine that had heretofore been perceived as having 
fixed structure. It added to our ensemble of operations those that built 
and modified structure in addition to those that replaced and changed 
content. (2) It was an early demonstration of the basic abstraction that 
a computer consists of a set of data types and a set of operations 
proper to these data types, so that a computational system should 
employ whatever data types are appropriate to the application, indepen- 
dent of the underlying machine. (3) List processing produced a model 
of designation, thus defining symbol manipulation in the sense in which 
we use this concept in computer science today. 

As often occurs, the practice of the time already anticipated all 
the elements of list processing: addresses are obviously used to gain 
access, the drum machines used linked programs (so-called one-plus- 
one addressing), and so on. But the conception of list processing as 
an abstraction created a new world in which designation and dynamic 
symbolic structure were the defining characteristics. The embedding 
of the early list processing systems in languages (the IPLs, LISP) is 
often decried as having been a barrier to the diffusion of list processing 
techniques throughout programming practice; but it was the vehicle 
that held the abstraction together. 

LISP. One more step is worth noting: McCarthy's creation of 
LISP in 1959-60 [McCarthy, 1960]. It completed the act of abstraction, 
lifting list structures out of their embedding in concrete machines, 
creating a new formal system with S-expressions, which could be 
shown to be equivalent to the other universal schemes of computation. 

Conclusion. That the concept of the designating symbol and sym- 
bol manipulation does not emerge until the mid-fifties does not mean 
that the earlier steps were either inessential or less important. The total 
concept is the join of computability, physical realizability (and by multi- 
ple technologies), universality, the symbolic representation of processes 
(i.e., interpretability), and, finally, symbolic structure and designation. 
Each of the steps provided an essential part of the whole. 

The first step in this chain, authored by Turing, is theoretically 
motivated, but the others all have deep empirical roots. We have 
been led by the evolution of the computer itself. The stored program 
principle arose out of the experience with Eniac. List processing arose 
out of the attempt to construct intelligent programs. It took its cue from 
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the emergence of random access memories, which provided a clear 
physical realization of a designating symbol in the address. LISP arose 
out of the evolving experience with list processing. 

The Evidence  
We come now to the evidence for the hypothesis that physical 

symbol systems are capable of intelligent action, and that general 
intelligent action calls for a physical symbol system. The hypothesis 
is an empirical generalization and not a theorem. We,. know of no 
way of demonstrating the connection between symbol systems and 
intelligence on purely logical grounds. Lacking such a demonstration, 
we must look at the facts. Our central aim, however, is not to review 
the evidence in detail, but to use the example before ~s to illustrate 
the proposition that computer science is a field of empirical inquiry. 
Hence, we will only indicate what kinds of evidence there is, and the 
general nature of the testing process. 

The notion of physical symbol system had taken essentially its 
present form by the middle of the 1950% and one can date from that 
time the growth of artificial intelligence as a coherent subfield of 
computer science. The twenty years of work since then has seen a 
continuous accumulation of empirical evidence of two main varieties. 
The first addresses itself to the sufficiency of physical symbol systems 
for producing intelligence, attempting to construct and test specific 
systems that have such a capability. The second kind of evidence 
addresses itself to the necessity of having a physical symbol system 
wherever intelligence is exhibited. It starts with Man, the intelligent 
system best known to us, and attempts to discover whether his cognitive 
activity can be explained as the working of a physical symbol system. 
There are other forms of evidence, which we will comment upon briefly 
later, but these two are the important ones. We will consider them in 
turn. The first is generally called artificial intelligence, the second, 
research in cognitive psychology. 

Const ruct ing Intel l igent  Systems. The basic paradigm for the 
initial testing of the germ theory of disease was: identify a disease; then 
look for the germ. An analogous paradigm has inspirecl much of the 
research in artificial intelligence: identify a task domain calling for 
intelligence; then construct a program for a digital computer that can 
handle tasks in that domain. The easy and well-structu:red tasks were 
looked at first: puzzles and games, operations research problems of 
scheduling and allocating resources, simple induction tasks. Scores, if 
not hundreds, of programs of these kinds have by now been constructed, 
each capable of some measure of intelligent action in the appropriate 
domain. 

Of course intelligence is not an all-or-none matter, and there has 
been steady progress toward higher levels of performance in specific 
domains, as well as toward widening the range of those ,domains. Early 
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chess programs, for example, were deemed successful if they could play 
the game legally and with some indication of purpose; a little later, they 
reached the level of human beginners; within ten or fifteen years, they 
began to compete with serious amateurs. Progress has been slow (and 
the total programming effort invested small) but continuous, and the 
paradigm of construct-and-test proceeds in a regular cycle -- the whole 
research activity mimicking at a macroscopic level the basic generate- 
and-test cycle of many of the AI programs. 

There is a steadily widening area within which intelligent action 
is attainable. From the original tasks, research has extended to building 
systems that handle and understand natural language in a variety of 
ways, systems for interpreting visual scenes, systems for hand-eye 
coordination, systems that design, systems that write computer pro- 
grams, systems for speech understanding--the list is, if not endless, 
at least very long. If there are limits beyond which the hypothesis will 
not carry us, they have not yet become apparent. Up to the present, 
the rate of progress has been governed mainly by the rather modest 
quantity of scientific resources that have been applied and the inevitable 
requirement of a substantial system-building effort for each new major 
undertaking. 

Much more has been going on, of course, than simply a piling up 
of examples of intelligent systems adapted to specific task domains. It 
would be surprising and unappealing if it turned out that the AI pro- 
grams performing these diverse tasks had nothing in common beyond 
their being instances of physical symbol systems. Hence, there has been 
great interest in searching for mechanisms possessed of generality, and 
for common components among programs performing a variety of tasks. 
This search carries the theory beyond the initial symbol system 
hypothesis to a more complete characterization of the particular kinds 
of symbol systems that are effective in artificial intelligence. In the se- 
cond section of the paper, we will discuss one example of a hypothesis 
at this second level of specificity: the heuristic search hypothesis. 

The search for generality spawned a series of programs designed 
to separate out general problem-solving mechanisms from the require- 
ments of particular task domains. The General Problem Solver IGPS) 
was perhaps the first of these, while among its descendants are such 
contemporary systems as PLANNER and CONNIVER. The search for 
common components has led to generalized schemes of representation 
for goals and plans, methods for constucting discrimination nets, pro- 
cedures for the control of tree search, pattern-matching mechanisms, 
and language-parsing systems. Experiments are at present under way 
to find convenient devices for representing sequences of time and tense, 
movement, causality and the like. More and more, it becomes possible 
to assemble large intelligent systems in a modular way from such basic 
components. 

We can gain some perspective on what is going on by turning, again, 
to the analogy of the germ theory. If the first burst of research stimulated 
by that theory consisted largely in finding the germ to go with each 
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disease, subsequent effort turned to learning what a germ was--to 
building on the basic qualitative law a new level of structure. In 
artificial intelligence, an initial burst of activity aimed at building 
intelligent programs for a wide variety of almost randomly selected 
tasks is giving way to more sharply targeted research aimed at 
understanding the common mechanisms of such systems. 

The Modeling of H u m a n  Symbolic Behavior. The symbol 
system hypothesis implies that the symbolic behavior of man arises 
because he has the characteristics of a physical symbol system. Hence, 
the results of efforts to model human behavior with symbol systems 
become an important part of the evidence for the hypothesis, and 
research in artificial intelligence goes on in close collaboration with 
research in information processing psychology, as it is usually called. 

The search for explanations of man's intelligent behavior in terms 
of symbol systems has had a large measure of success over the past 
twenty years, to the point where information processing theory is 
the leading contemporary point of view in cognitive psychology. 
Especially in the areas of problem solving, concept attainment, and 
long-term memory, symbol manipulation models now dominate the 
scene. 

Research in information processing psychology involves two main 
kinds of empirical activity. The first is the conduct of observations and 
experiments on human behavior in tasks requiring intelligence. The 
second, very similar to the parallel activity in artificial intelligence, is 
the programming of symbol systems to model the observed human 
behavior. The psychological observations and experiments lead to the 
formulation of hypotheses about the symbolic processe.s the subjects 
are using, and these are an important source of the ideas that go 
into the construction of the programs. Thus, many of the ideas for 
the basic mechanisms of GPS were derived from careful analysis of 
the protocols that human subjects produced while thinking aloud 
during the performance of a problem-solving task. 

The empirical character of computer science is nowhere more 
evident than in this alliance with psychology. Not only are psychological 
experiments required to test the veridicality of the simulation models 
as explanations of the human behavior, but out of the experiments come 
new ideas for the design and construction of physical symbol systems. 

Other  Evidence. The principal body of evidence for the symbol 
system hypothesis that we have not considered is negative evidence: 
the absence of specific competing hypotheses as to how intelligent 
activity might be accomplished--whether by man or machine. Most 
attempts to build such hypotheses have taken place within the field 
of psychology. Here we have had a continuum of theories from the 
points of view usually labeled "behaviorism" to those usually labeled 
"Gestalt theory." Neither of these points of view stands as a real 
competitor to the symbol system hypothesis, and this for two reasons. 
First, neither behaviorism nor Gestalt theory had demonstrated, or even 
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shown how to demonstrate, that the explanatory mechanisms it 
postulates are sufficient to account for intelligent behavior in complex 
tasks. Second, neither theory has been formulated with anything like 
the specificity of artificial programs. As a matter of fact, the alternative 
theories are sufficiently vague so that it is not terribly difficult to give 
them information processing interpretations, and thereby assimilate 
them to the symbol system hypothesis. 

C o n c l u s i o n  
We have tried to use the example of the Physical Symbol System 

Hypothesis to illustrate concretely that computer science is a scientific 
enterprise in the usual meaning of that term: that it develops scientific 
hypotheses which it then seeks to verify by empirical inquiry. We had 
a second reason, however, for choosing this particular example to illus- 
trate our point. The Physical Symbol System Hypothesis is itself a 
substantial scientific hypothesis of the kind that we earlier dubbed "laws 
of qualitative structure." It represents an important discovery of com- 
puter science, which if borne out by the empirical evidence, as in fact 
appears to be occurring, will have major continuing impact on the field. 

We turn now to a second example, the role of search in intelligence. 
This topic and the particular hypothesis about it that we shall examine 
have also played a central role in computer science, in general, and 
artificial intelligence, in particular. 

II 
Heurist ic  Search 

Knowing that physical symbol systems provide the matrix for 
intelligent action does not tell us how they accomplish this. Our second 
example of a law of qualitative structure in computer science addresses 
this latter question, asserting that symbol systems solve problems by 
using the processes of heuristic search. This generalization, like the 
previous one, rests on empirical evidence, and has not been derived 
formally from other premises. However, we shall see in a moment that 
it does have some logical connection with the symbol system hypothesis, 
and perhaps we can look forward to formalization of the connection 
at some time in the future. Until that time arrives, our story must again 
be one of empirical inquiry. We will describe what is known about 
heuristic search and review the empirical findings that show how it 
enables action to be intelligent. We begin by stating this law of 
qualitative structure, the Heuristic Search Hypothesis. 

Heuristic Search Hypothesis. The solutions to problems are 
represented as symbol structures. A physical symbol system exer- 
cises its intelligence in problem solving by search--that  is, by 
generating and progressively modifying symbol structures until it 
produces a solution structure. 
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Physical symbol systems must use heuristic search to solve problems 
because such systems have limited processing resources; in a finite 
number of steps, and over a finite interval of time, they can execute 
only a finite number of processes. Of course that is not a very strong 
limitation, for all universal Turing machines suffer from. it. We intend 
the limitation, however, in a stronger sense: we mean practically limited. 
We can conceive of systems that are not limited in a practical way, 
but are capable, for example, of searching in parallel the nodes of 
an exponentially expanding tree at a constant rate for each unit advance 
in depth. We will not be concerned here with such systems, but 
with systems whose computing resources are scarce relative to the 
complexity of the situations with which they are confronted. The 
restriction will not exclude any real symbol systems, in computer or 
man, in the context of real tasks. The fact of limited resources allows 
us, for most purposes, to view a symbol system as the, ugh it were a 
serial, one-process-at-a-time device. If it can accomplish only a small 
amount of processing in any short time interval, then we might as well 
regard it as doing things one at a time. Thus "limited resource symbol 
system" and "serial symbol system" are practically synonymous. The 
problem of allocating a scarce resource from moment to moment can 
usually be treated, if the moment is short enough, as a problem of 
scheduling a serial machine. 

Problem Solving 
Since ability to solve problems is generally taken as a prime indicator 

that a system has intelligence, it is natural that much of the history of 
artificial intelligence is taken up with attempts to build and under- 
stand problem-solving systems. Problem solving has been discussed by 
philosophers and psychologists for two millenia, in discourses dense 
with the sense of mystery. If you think there is nothing problematic 
or mysterious about a symbol system solving problems, then you are 
a child of today, whose views have been formed since mid-century. Plato 
(and, by his account, Socrates) found difficulty understanding even how 
problems could be entertained, much less how they could be solved. 
Let me remind you of how he posed the conundrum i.n the Meno: 

Meno: And how will you inquire, Socrates, into that  which  you know not? Wha t  
will you put  forth as the  subject  of inquiry? And if you find what  you want,  how 
will you ever know that  this is wha t  you did not  know? 

To deal with this puzzle, Plato invented his famous theory of recollec- 
tion: when you think you are discovering or learning something, you 
are really just recalling what you already knew in a previous existence. 
If you find this explanation preposterous, there is a much simpler one 
available today, based upon our understanding of symbol systems. An 
approximate statement of it is: 

To state a p rob lem is to designate (11 a test for a class of symbo l  s t ructures  
(solutions of the  problem), and  (2) a generator of symbol  s t ruc tures  (potential 
solut ions I. To solve a p rob lem is to generate  a structure,  us ing (2), that  satisfies 
the  test of (1). 
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We have a problem if we know what we want to do (the test), and 
if we don't know immediately how to do it (our generator does not 
immediately produce a symbol structure satisfying the test). A symbol 
system can state and solve problems (sometimes) because it can generate 
and test. 

If that is all there is to problem solving, why not simply generate 
at once an expression that satisfies the test? This is, in fact, what we 
do when we wish and dream. "If wishes were horses, beggars might 
ride." But outside the world of dreams, it isn't possible. To know how 
we would test something, once constructed, does not mean that we 
know how to construct i t - - that  we have any generator for doing so. 

For example, it is well known what it means to "solve" the problem 
of playing winning chess. A simple test exists for noticing winning 
positions, the test for checkmate of the enemy King. In the world of 
dreams one simply generates a strategy that leads to checkmate for all 
counter strategies of the opponent. Alas, no generator that will do this 
is known to existing symbol systems (man or machine). Instead, good 
moves in chess are sought by generating various alternatives, 
and painstakingly evaluating them with the use of approximate, and 
often erroneous, measures that are supposed to indicate the likelihood 
that a particular line of play is on the route to a winning position. 
Move generators there are; winning move generators there are not. 

Before there can be a move generator for a problem, there must 
be a problem space: a space of symbol structures in which problem 
situations, including the initial and goal situations, can be represented. 
Move  generators are processes for modifying one situation in the 
problem space into another. The basic characteristics of physical 
symbol systems guarantee that they can represent problem spaces and 
that they possess move generators. How, in any concrete situation they 
synthesize a problem space and move generators appropriate to that 
situation is a question that is still very much on the frontier of artificial 
intelligence research. 

The task that a symbol system is faced with, then, when it is 
presented with a problem and a problem space, is to use its limited 
processing resources to generate possible solutions, one after another, 
until it finds one that satisfies the problem-defining test. If the system 
had some control over the order in which potential solutions were 
generated, then it would be desirable to arrange this order of genera- 
tion so that actual solutions would have a high likelihood of appearing 
early. A symbol system would exhibit intelligence to the extent that 
it succeeded in doing this. Intelligence for a system with limited 
processing resources consists in making wise choices of what to do next. 

Search in Problem Solving 
During the first decade or so of artificial intelligence research, the 

study of problem solving was almost synonymous with the study of 
search processes. From our characterization of problems and problem 
solving, it is easy to see why this was so. In fact, it might be asked 
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whether it could be otherwise. But before we try to answer that 
question, we must explore fu::ther the nature of search processes as 
it revealed itself during that decade of activity. 
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Extracting Information Jfrom the Problem Space. Consider a 
set of symbol structures, some small subset of which are solutions to 
a given problem. Suppose, further, that the solutions are distributed 
randomly through the entire set. By this we mean that no information 
exists that would enable any search generator to perform better than 
a random search. Then no symbol system could exhibit more intel- 
ligence (or less intelligence) than any other in solving the problem, 
although one might experienc, e better luck than another. 

A condition, then, for the appearance of intelligence is that the 
distribution of solutions be not entirely random, that the space of 
symbol structures exhibit at least some degree of order and pattern. 
A second condition is that pattern in the space of symbol structures 
be more or less detectable. A third condition is that the generator of 
potential solutions be able to behave differentially, depending on what 
pattern it detected. There must be information in the problem space, 
and the symbol system must be capable of extracting and using it. Let 
us look first at a very simple example, where the intelligence is easy 
to come by. 

Consider the problem of solving a simple algebraic equation: 

A X  + B = CX + D 

The test defines a solution as any expression of the form, X = E, such 
that A E  + B = CE  + D. Now one could use as generator any process 
that would produce numbers ~hich could then be tested by substituting 
in the latter equation. We would not call this an intelligent generator. 

Alternatively, one could use generators that would make use of the 
fact that the original equation can be modified--by adding or subtract- 
ing equal quantities from both sides, or multiplying or dividing both 
sides by the same quantity--without changing its solutions. But, of 
course, we can obtain even more information to guide the generator 
by comparing the original expression with the form of the solution, and 
making precisely those changes in the equation that leave its solution 
unchanged, while at the same time, bringing it into the desired form. 
Such a generator could notice that there was an unwanted CX on the 
right-hand side of the original equation, subtract it from both sides and 
collect terms again. It could then notice that there was an unwanted 
B on the left-hand side and subtract that. Finally, it could get rid of the 
unwanted coefficient (A - C)  on the left-hand side by dividing. 

Thus by this procedure, which now exhibits considerable in- 
telligence, the generator produces successive symbol structures, each 
obtained by modifying the previous one; and the modifications are 
aimed at reducing the differences between the form of the input 
structure and the form of the test expression, while maintaining the 
other conditions for a so lu t io l  
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This simple example already illustrates many of the main 
mechanisms that are used by symbol systems for intelligent problem 
solving. First, each successive expression is not generated indepen- 
dently, but is produced by modifying one produced previously. Second, 
the modifications are not haphazard, but depend upon two kinds of 
information. They depend on information that is constant over this 
whole class of algebra problems, and that is built into the structure of 
the generator itself: all modifications of expressions must leave the 
equation's solution unchanged. They also depend on information that 
changes at each step: detection of the differences in form that remain 
between the current expression and the desired expression. In effect, 
the generator incorporates some of the tests the solution must satisfy, 
so that expressions that don't meet these tests will never be generated. 
Using the first kind of information guarantees that only a tiny subset 
of all possible expressions is actually generated, but without losing 
the solution expression from this subset. Using the second kind of 
information arrives at the desired solution by a succession of approxima- 
tions, employing a simple form of means-ends analysis to give direction 
to the search. 

There is no mystery where the information that guided the search 
came from. We need not follow Plato in endowing the symbol system 
with a previous existence in which it already knew the solution. A 
moderately sophisticated generator-test system did the trick without 
invoking reincarnation. 

Search Trees. The simple algebra problem may seem an unusual, 
even pathological, example of search. It is certainly not trial-and-error 
search, for though there were a few trials, there was no error. We 
are more accustomed to thinking of problem-solving search as 
generating lushly branching trees of partial solution possibilities which 
may grow to thousands, or even millions, of branches, before they yield 
a solution. Thus, if from each expression it produces, the generator 
creates B new branches, then the tree will grow as BD. where D is its 
depth. The tree grown for the algebra problem had the peculiarity that 
its branchiness, B, equaled unity. 

Programs that play chess typically grow broad search trees, amount- 
ing in some cases to a million branches or more. (Although this 
example will serve to illustrate our points about tree search, we should 
note that the purpose of search in chess is not to generate proposed 
solutions, but to evaluate (test) them.) One line of research into game- 
playing programs has been centrally concerned with improving the 
representation of the chess board, and the processes for making moves 
on it, so as to speed up search and make it possible to search larger 
trees. The rationale for this direction, of course, is that the deeper 
the dynamic search, the more accurate should be the evaluations 
at the end of it. On the other hand, there is good empirical evidence 
that the strongest human players, grandmasters, seldom explore trees 
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of more than one hundred branches. This economy is achieved not 
so much by searching less deeply than do chess-playing programs, 
but by branching very sparsely and selectively at each node. This 
is only possible, without causing a deterioration of the evaluations, 
by having more of the selectivity built into the generator itself, so 
that it is able to select for generation just those branches that are 
very likely to yield important relevant information about the position. 

The somewhat paradoxical-sounding conclusion to which this 
discussion leads is that search--successive generation of potential 
solution structures--is a fundamental aspect of a symbol system's 
exercise of intelligence in problem solving but that amount of search 
is not a measure of the amount of intelligence being exhibited. What 
makes a problem a problem is not that a large amount of search is 
required for its solution, but that a large amount would be required if 
a requisite level of intelligence were not applied. When the symbolic 
system that is endeavoring to solve a problem knows enough about what 
to do, it simply proceeds directly towards its goal; but whenever its 
knowledge becomes inadequate, when it enters terra incognita, it is 
faced with the threat of going through large amounts of search before 
it finds its way again. 

The potential for the exponential explosion of the search tree that 
is present in every scheme for generating problem solutions warns us 
against depending on the brute force of computers--even the biggest 
and fastest computers--as a compensation for the ignorance and 
unselectivity of their generators. The hope is still periodically ignited 
in some human breasts that a computer can be found that is fast enough, 
and that can be programmed cleverly enough, to play good chess by 
brute-force search. There is nothing known in theory about the game 
of chess that rules out this possibility. Empirical studies on the manage- 
ment of search in sizable trees with only modest results make this a 
much less promising direction than it was when chess was first chosen 
as an appropriate task for artificial intelligence. We must regard this 
as one of the important empirical findings of research with chess 
programs. 
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The Forms of Intelligence. The task of intelligence, then, is to 
avert the ever-present threat of the exponential explosion of search. 
How can this be accomplished? The first route, already illustrated 
by the algebra example, and by chess programs that only generate 
"plausible" moves for further analysis, is to build selectivity into the 
generator: to generate only structures that show promise of being 
solutions or of being along the path toward solutions. The usual 
consequence of doing this is to decrease the rate of branching, not 
to prevent it entirely. Ultimate exponential explosion is not avoided-- 
save in exceptionally highly structured situations like the algebra 
example-- but only postponed. Hence, an intelligent system generally 
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needs to supplement the selectivity of its solution generator with other 
information-using techniques to guide search. 

Twenty years of experience with managing tree search in a variety 
of task environments has produced a small kit of general techniques 
which is part of the equipment of every researcher in artificial intel- 
ligence today. Since these techniques have been described in general 
works like that of Nilsson [1971], they can be summarized very briefly 
here. 

In serial heuristic search, the basic question always is: what shall 
be done next? In tree search, that question, in turn, has two components: 
(1) from what node in the tree shall we search next, and [21 what 
direction shall we take from that node? Information helpful in answering 
the first question may be interpreted as measuring the relative distance 
of different nodes from the goal. Best-first search calls for searching 
next from the node that appears closest to the goal. Information helpful 
in answering the second question--in what direction to search--is 
often obtained, as in the algebra example, by detecting specific dif- 
ferences between the current nodal structure and the goal structure 
described by the test of a solution, and selecting actions that are 
relevant to reducing these particular kinds of differences. This is the 
technique known as means-ends analysis, which plays a central role 
in the structure of the General Problem Solver. 

The importance of empirical studies as a source of general ideas 
in AI research can be demonstrated clearly by tracing the history, 
through large numbers of problem-solving programs, of these two 
central ideas: best-first search and means-ends analysis. Rudiments 
of best-first search were already present, though unnamed, in the Logic 
Theorist in 1955. The General Problem Solver, embodying means-ends 
analysis, appeared about 1957--but combined it with modified depth- 
first search rather than best-first search. Chess programs were generally 
wedded, for reasons of economy of memory, to depth-first search, 
supplemented after about 1958 by the powerful alpha-beta pruning 
procedure. Each of these techniques appears to have been reinvented 
a number of times, and it is hard to find general, task-independent 
theoretical discussions of problem solving in terms of these concepts 
until the middle or late 1960's. The amount of formal buttressing 
they have received from mathematical theory is still miniscule: some 
theorems about the reduction in search that can be secured from 
using the alpha-beta heuristic, a couple of theorems (reviewed by 
Nilsson [1971]) about shortest-path search, and some very recent 
theorems on best-first search with a probabilistic evaluation function. 

"Weak"  and  "Strong" Methods.  The techniques we have been 
discussing are dedicated to the control of exponential expansion rather 
than its prevention. For this reason, they have been properly called 
"weak methods" -- methods to be used when the symbol system's 
knowledge or the amount of structure actually contained in the problem 
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space is inadequate to permit search to be avoided entirely. It is 
instructive to contrast a highly structured situation, which can be 
formulated, say, as a linear programming problem, with the less struc- 
tured situations of combinatorial problems like the traveling salesman 
problem or scheduling problems. ("Less structured" here refers to the 
insufficiency or nonexistence of relevant theory about the structure of 
the problem space.} 

In solving linear programming problems, a substantial amount of 
computation may be required, but the search does not branch. Every 
step is a step along the way to a solution. In solving combinatorial 
problems or in proving theorems, tree search can seldom be avoided, 
and success depends on heuristic search methods of the sort we have 
been describing. 

Not all streams of AI problem-solving research have followed the 
path we have been outlining. An example of a somewhat different 
point is provided by the work on theorem-proving systems. Here, ideas 
imported from mathematics and logic have had a strong influence 
on the direction of inquiry. For example, the use of heuristics was 
resisted when properties of completeness could not be proved {a bit 
ironic, since most interesting mathematical systems are known to 
be undecidable). Since completeness can seldom be proved for best- 
first search heuristics, or for many kinds of selective generators, the 
effect of this requirement was rather inhibiting. When theorem-proving 
programs were continually incapacitated by the combinatorial explo- 
sion of their search trees, thought began to be given to selective 
heuristics, which in many cases proved to be analogues of heuristics 
used in general problem-solving programs. The set-of-support heuristic, 
for example, is a form of working backwards, adapted to the resolu- 
tion theorem-proving environment. 
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A S u m m a r y  of the Experience. We have now described the 
workings of our second law of qualitative structure, which asserts that 
physical symbol systems solve problems by means of heuristic search. 
Beyond that, we have examined some subsidiary characteristics of 
heuristic search, in particular the threat that it always faces of exponen- 
tial explosion of the search tree, and some of the means it uses to avert 
that threat. Opinions differ as to how effective heuristic search has been 
as a problem-solving mechanism--the opinions depending on what task 
domains are considered and what criterion of adequacy is adopted: 
Success can be guaranteed by setting aspiration levels low--or failure 
by setting them high. The evidence might be summed up about as 
follows. Few programs are solving problems at "expert" professional 
levels. Samuel's checker program and Feigenbaum and Ledergerg's 
DENDRAL are perhaps the best-known exceptions, but one could point 
also to a number of heuristic search programs for such operations 
research problem domains as scheduling and integer programming. 
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In a number of domains, programs perform at the level of competent 
amateurs: chess, some theorem-proving domains, many kinds of games 
and puzzles. Human levels have not yet been nearly reached by pro- 
grams that have a complex perceptual "front end": visual scene 
recognizers, speech understanders, robots that have to maneuver in real 
space and time. Nevertheless, impressive progress has been made, and 
a large body of experience assembled about these difficult tasks. 

We do not have deep theoretical explanations for the particular pat- 
tern of performance that has emerged. On empirical grounds, however, 
we might draw two conclusions. First, from what has been learned 
about human expert performance in tasks like chess, it is likely that 
any system capable of matching that performance will have to have 
access, in its memories, to very large stores of semantic information. 
Second, some part of the human superiority in tasks with a large percep- 
tual component can be attributed to the special-purpose built-in parallel 
processing structure of the human eye and ear. 

In any case, the quality of performance must necessarily depend 
on the characteristics both of the problem domains and of the symbol 
systems used to tackle them. For most real-life domains in which we 
are interested, the domain structure has not proved sufficiently simple 
to yield [so far I theorems about complexity, or to tell us, other than em- 
pirically, how large real-world problems are in relation to the abilities 
of our symbol systems to solve them. That situation may change, but 
until it does, we must rely upon empirical explorations, using the best 
problem solvers we know how to build, as a principal source of 
knowledge about the magnitude and characteristics of problem diffi- 
culty. Even in highly structured areas like linear programming, theory 
has been much more useful in strengthening the heuristics that underlie 
the most powerful solution algorithms than in providing a deep analysis 
of complexity. 

Intelligence Wi thout  Much  Search 
Our analysis of intelligence equated it with ability to extract and 

use information about the structure of the problem space, so as to 
enable a problem solution to be generated as quickly and directly 
as possible. New directions for improving the problem-solving 
capabilities of symbol systems can be equated, then, with new ways 
of extracting and using information. At least three such ways can be 
identified. 

Nonlocal Use of Informat ion .  First, it has been noted by several 
investigators that information gathered in the course of tree search 
is usually only used locally, to help make decisions at the specific node 
where the information was generated. Information about a chess 
position, obtained by dynamic analysis of a subtree of continuations, 
is usually used to evaluate just that position, not to evaluate other 
positions that may contain many of the same features. Hence, the same 
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facts have to be rediscovered repeatedly at different nodes of the search 
tree. Simply to take the information out of the context in which it arose 
and use it generally does not solve the problem, for the information 
may be valid only in a limited range of contexts. In recent years, a 
few exploratory efforts have been made to transport information from 
its context of origin to other appropriate contexts. While it is still 
too early to evaluate the power of this idea, or even exactly how it 
is to be achieved, it shows considerable promise. An important line of 
investigation that Berliner [1975] has been pursuing is to use causal 
analysis to determine the range over which a particular piece of in- 
formation is valid. Thus if a weakness in a chess position can be traced 
back to the move that made it, then the same weakness can be expected 
in other positions descendant from the same move. 

The HEARSAY speech understanding system has taken another 
approach to making information globally available. That system seeks 
to recognize speech strings by pursuing a parallel search at a number 
of different levels: phonemic, lexical, syntactic, and semantic. As each 
of these searches provides and evaluates hypotheses, it supplies the 
information it has gained to a common "blackboard" that can be read 
by all the sources. This shared information can be used, for example, 
to eliminate hypotheses, or even whole classes of hypotheses, that 
would otherwise have to be searched by one of the processes. Thus, 
increasing our ability to use tree-search information nonlocally offers 
promise for raising the intelligence of problem-solving systems. 
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Semantic  Recognit ion Systems. A second active possibility for 
raising intelligence is to supply the symbol system with a rich body 
of semantic information about the task domain it is dealing with. 
For example, empirical research on the skill of chess masters shows 
that a major source of the master's skill is stored information that 
enables him to recognize a large number of specific features and 
patterns of features on a chess board, and information that uses this 
recognition to propose actions appropriate to the features recognized. 
This general idea has, of course, been incorporated in chess programs 
almost from the beginning. What is new is the realization of the number 
of such patterns and associated information that may have to be stored 
for master-level play: something of the order of 50,000. 

The possibility of substituting recognition for search arises because 
a particular, and especially a rare, pattern can contain an enormous 
amount of information, provided that it is closely linked to the struc- 
ture of the problem space. When that structure is "irregular," and 
not subject to simple mathematical description, then knowledge of a 
large number of relevant patterns may be the key to intelligent behavior. 
Whether this is so in any particular task domain is a question more 
easily settled by empirical investigation than by theory. Our experience 
with symbol systems richly endowed with semantic information and 
pattern-recognizing capabilities for accessing it is still extremely limited. 
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The discussion above refers specifically to semantic information 
associated with a recognition system. Of course, there is also a whole 
large area of AI research on semantic information processing and the 
organization of semantic information of semantic memories that falls 
outside the scope of the topics we are discussing in this paper. 

Selecting Appropriate  Representat ions.  A third line of inquiry 
is concerned with the possibility that search can be reduced or avoided 
by selecting an appropriate problem space. A standard example that 
illustrates this possibility dramatically is the mutilated checkerboard 
problem. A standard 64 square checkerboard can be covered exactly 
with 32 tiles, each 1 x 2 rectangle covering exactly two squares. Suppose, 
now, that we cut off squares at two diagonally opposite corners of the 
checkerboard, leaving a total of 62 squares. Can this mutilated board 
be covered exactly with 31 tiles? With (literally} heavenly patience, the 
impossibility of achieving such a covering can be demonstrated by 
trying all possible arrangements. The alternative, for those with less 
patience, and more intelligence, is to observe that the two diagonally 
opposite corners of a checkerboard are of the same color. Hence, the 
mutilated checkerboard has two less squares of one color than of the 
other. But each tile covers one square of one color and one square of 
the other, and any set of tiles must cover the same number of squares 
of each color. Hence, there is no solution. How can a symbol system 
discover this simple inductive argument as an alternative to a hopeless 
attempt to solve the problem by search among all possible coverings? 
We would award a system that found the solution high marks for 
intelligence. 

Perhaps, however, in posing this problem we are not escaping from 
search processes. We have simply displaced the search from a space 
of possible problem solutions to a space of possible representations. 
In any event, the whole process of moving from one representation to 
another, and of discovering and evaluating representations, is largely 
unexplored territory in the domain of problem-solving research. The 
laws of qualitative structure governing representations remain to be 
discovered. The search for them is almost sure to receive considerable 
attention in the coming decade. 

C o n c l u s i o n  
That is our account of symbol systems and intelligence. It has 

been a long road from Plato's Meno to the present, but it is perhaps 
encouraging that most of the progress along that road has been made 
since the turn of the twentieth century, and a large fraction of it since 
the midpoint of the century. Thought was still wholly intangible and 
ineffable until modern formal logic interpreted it as the manipulation 
of formal tokens. And it seemed still to inhabit mainly the heaven of 
Platonic ideals, or the equally obscure spaces of the human mind, 
until computers taught us how symbols could be processed by 
machines. A. M. Turing, whom we memorialize this morning, made 
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his great contributions at the mid-century crossroads of these 
developments that led from modern logic to the computer. 
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Physical Symbol  Systems. The study of logic and computers has 
revealed to us that intelligence resides in physical symbol systems. This 
is computer sciences's most basic law of qualitative structure. 

Symbol systems are collections of patterns and processes, the latter 
being capable of producing, destroying and modifying the former. The 
most important properties of patterns is that they can designate objects, 
processes, or other patterns, and that, when they designate processes, 
they can be interpreted. Interpretation means carrying out the 
designated process. The two most significant classes of symbol systems 
with which we are acquainted are human beings and computers. 

Our present understanding of symbol systems grew, as indicated 
earlier, through a sequence of stages. Formal logic familiarized us 
with symbols, treated syntactically, as the raw material of thought, 
and with the idea of manipulating them according to carefully defined 
formal processes. The Turing machine made the syntactic processing 
of symbols truly machine-like, and affirmed the potential universality 
of strictly defined symbol systems. The stored-program concept for 
computers reaffirmed the interpretability of symbols, already implicit 
in the Turing machine. List processing brought to the forefront the 
denotational capacities of symbols, and defined symbol processing 
in ways that allowed independence from the fixed structure of the 
underlying physical machine. By 1956 all of these concepts were 
available, together with hardware for implementing them. The study 
of the intelligence of symbol systems, the subject of artificial intel- 
ligence, could begin. 

Heurist ic  Search. A second law of qualitative structure for AI is 
that symbol systems solve problems by generating potential solutions 
and testing them, that is, by searching. Solutions are usually sought by 
creating symbolic expressions and modifying them sequentially until 
they satisfy the conditions for a solution. Hence symbol systems solve 
problems by searching. Since they have finite resources, the search 
cannot be carried out all at once, but must be sequential. It leaves behind 
it either a single path from starting point to goal or, if correction and 
backup are necessary, a whole tree of such paths. 

Symbol systems cannot appear intelligent when they are surrounded 
by pure chaos. They exercise intelligence by extracting information from 
a problem domain and using that information to guide their search, 
avoiding wrong turns and circuitous bypaths. The problem domain must 
contain information, that is, some degree of order and structure, for 
the method to work. The paradox of the Meno is solved by the observa- 
tion that information may be remembered, but new information may 
also be extracted from the domain that the symbols designate. In both 
cases, the ultimate source of the information is the task domain. 
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The Empir ical  Base. Artificial intelligence research is concerned 
with how symbol systems must be organized in order to behave 
intelligently. Twenty years of work in the areas has accumulated a 
considerable body of knowledge, enough to fill several books {it already 
has), and most of it in the form of rather concrete experience about 
the behavior of specific classes of symbol systems in specific task 
domains. Out of this experience, however, there have also emerged 
some generalizations, cutting across task domains and systems, about 
the general characteristics of intelligence and its methods of 
implementation. 

We have tried to state some of these generalizations this morning. 
They are mostly qualitative rather than mathematical. They have more 
the flavor of geology or evolutionary biology than the flavor of 
theoretical physics. They are sufficiently strong to enable us today to 
design and build moderately intelligent systems for a considerable range 
of task domains, as well as to gain a rather deep understanding of how 
human intelligence worked in many situations. 

What  Next? In our account today, we have mentioned open ques- 
tions as well as settled ones; there are many of both. We see no abate- 
ment of the excitement of exploration that has surrounded this field 
over the past quarter century. Two resource limits will determine 
the rate of progress over the next such period. One is the amount of 
computing power that will be available. The second, and probably the 
more important, is the number of talented young computer scientists 
who will be attracted to this area of research as the most challenging 
they can tackle. 

A. M. Turing concluded his famous paper on "Computing Machinery 
and Intelligence" with the words: 

"We can only see a short  distance ahead, but we  can see p len ty  there  that  needs  
to be done." 

Many of the things Turing saw in 1950 that needed to be done 
have been done, but the agenda is as full as ever. Perhaps we read 
too much into his simple statement above, but we like to think that 
in it Turing recognized the fundamental truth that all computer scien- 
tists instinctively know. For all physical symbol systems, condemned 
as we are to serial search of the problem environment, the critical 
question is always: What to do next? 
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Our Turing Award lecture was given in 1975, two decades after the begin- 
nings of artificial intelligence in the mid-fifties. Another decade has now 
passed. The lecture mostly avoided prophecy and agenda building, choosing 
rather to assert a ver i ty-- that  computer science is an empirical science. It did 
that by looking backward at the development of two general principles that 
underlie the theory of intelligent act ion-- the requirements for physical sym- 
bol systems and for search. It might be interesting to ask whether the intervening 
decade has added to or subtracted from the stance and assessments set forth 
then. 

A lot has happened in that decade. Both computer science and artificial 
intelligence have continued to grow, scientifically, technologically, and 
economically. A point implicit but deliberate in the lecture was that artificial 
intelligence is a part of computer science, both rising from the same intellectual 
ground. Social history has continued to follow logic here {it does not always 
do so}, and artificial intelligence continues to be a part of computer science. 
If anything, their relations are becoming increasingly intimate as the application 
of intelligent systems to software engineering in the guise of expert systems 
becomes increasingly attractive. 

The main point about empirical inquiry is reflected throughout computer 
science. A lot has happened everywhere, but let us focus on artificial intel- 
ligence. The explosion of work in expert systems, the developments in learn- 
ing systems, and the work on intelligent tutoring provide significant examples 
of areas that have blossomed since the lecture (and received no recognition 
in it}. All of them have been driven by empirical inquiry in the strongest way. 
Even the emergence of the work on logic programming, which is an expres- 
sion of the side of artificial intelligence that is most strongly identified with 
formal procedures and theorem proving, has attained much of its vitality from 
being turned into a programming enterprise--in which, thereby, experience 
leads the way. 

There have, of course, been significant developments of theory. Particularly 
pertinent to the content of our lecture has been work in the complexity analysis 
of heuristic search, as exemplified in the recent book by Pearl [10]. But this 
too illustrates the standard magic cycle of science, where theory finally builds 
up when analyzed experience has sufficiently accumulated. We are still 
somewhat shy of closing that cycle by getting theory to the point where it 
provides the routine framework within which further experience is planned 
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so that henceforth data and theory go hand in hand. That time will surely come, 
although it is still a little distant. 

We chose the forum of an award lecture to give voice to two fundamental  
principles {about symbols and search} that seemed to us to be common cur- 
rency in the practice and understanding of artificial intelligence, but which 
needed to be recognized for what  they were - - the  genuine foundations of 
intelligent action. Their histories in the meant ime have been somewhat dif- 
ferent, though both remain on paths we interpret  as supporting their essential 
correctness. 

Bringing to the fore the physical symbol system hypothesis has proved useful 
to the field, although we did find it worthwhile subsequently to set out the 
hypothesis in more detail [7]. The hypothesis is taken rather generally to 
express the view of mind that has arisen from the emergence of the computer. 
However, that does not mean it is uncontroversial. There remain intellectual 
positions that stand outside the entire computational  view and regard the 
hypothesis as undoubtedly false [3, 11]. More to the point are two other positions. 
One is found among the philosophers, many of whom believe that the central 
problem of semantics or intentionali ty --  how symbols signify their external 
re fe ren t s - - i s  not addressed by physical symbol systems. The other position 
is found among some of the connectionists within artificial intelligence and 
cognitive science, who believe there are forms of processing organization 
{wrought in the image of neural  systems I that will accomplish all that symbol 
systems do, but in which symbols will not be identifiable entities. In both cases 
more investigation is clearly needed and will no doubt be forthcoming. The 
case for symbols still seems clear to us, so our bets remain on the side of the 
symbol system hypothesis. 

A development related,to the physical  symbol system hypothesis is worth 
noting. It is the practice in computer science and artificial intelligence to describe 
systems simply in terms of the knowledge they have, presuming that there 
exist processing mechanisms that will cause the system to behave as if it could 
use the knowledge to attain the purposes the system is supposed to serve. This 
practice extends to design, where stipulating the knowledge a system is to have 
is a specification for what  mechanisms are to be constructed. We took an 
opportunity, analogous to that of the Turing Award, namely, the presidential  
address of the American Association for Artificial Intelligence (AAAI), to also 
cast th ispract ice  in crisp terms [8]. We defined another computer-system level 
above the symbol level, called the knowledge level. This corresponds pretty 
clearly to what  Dan Dennett  in philosophy had come to call the intentional 
stance [2]. Its roots, of course, lie in that remarkable characteristic of adaptive 
systems that they behave solely as a function of the task environment,  hiding 
therewith the nature of their internal mechanisms [9, 12]. Again, our motives 
in identifying the knowledge level were the same as in the 'Ihring Award 
l ec tu re - - to  articulate what every good computer-science practi t ioner knows 
in a form that admits further technical expansion. There are some small signs 
that this expansion is beginning for the knowledge level [6]. 

Turning to the second hypothesis, that of heuristic search, recognition of 
its importance was explicit and abundant  in the early years of artificial 
intelligence. Our aim in the 'Ihring Award lecture was to emphasize that search 
is essential to all intelligent action, rather than just one interesting mechanism 
among many. As it happened, the year of the lecture, 1975, just preceded the 
efflorescence of the view that knowledge is of central importance to intelligence. 
The trend had been building from the early seventies. The sign of this new 
view was the emergence of the field of expert systems and the new role of the 
knowledge engineer [4]. The exuberance of this movement  can be seen in the 
assertion that there had been a paradigm shift in artificial intelligence, which 
had finally abandoned search and would henceforth embrace knowledge as 
its guiding principle [5]. 
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An alternative interpretation {and the one we hold) is that no revolution 
occurred, but something more akin to the cycle of accommodation, assimilation, 
and equilibration that Piaget describes as the normal process of development 
{although he was talking of children and not scientific fields). Science works 
by expanding each new facet of understanding as it emerges--it  accommodates 
to new understanding by an extended preoccupation to assimilate it. The late 
seventies and early eighties were devoted to exploring what it meant for systems 
to have enough knowledge about their task to dispense with much search of 
the problem space, and yet to do tasks that demanded intelligence, as opposed 
to just implementing small algorithms. {As the amount of knowledge increased, 
of course, these systems did require search of the rules in the knowledge base.) 
Concomitantly, the tasks performed by these systems, although taken from the 
real world, were also of little intellectual [i.e., inferential} difficulty. The role 
of search in difficult intellectual tasks remained apparent to those who continued 
to work on programs to accomplish them-- i t  is hard to avoid when the threat 
of combinatorial explosion lurks around every corner. Having now assimilated 
some of the mechanisms for bringing substantial amounts of knowledge to bear, 
the field seems to have reached an understanding that both search and 
knowledge play an essential role. 

A last reflection concerns chess, which runs like a thread through the whole 
lecture, providing {as it always does) clear examples for many points. The 
progress of a decade is apparent in the current art, where the Hitech chess 
machine [1] has now attained high master ratings (2340, where masters range 
from 2200 to 2400}. It is still climbing, although no one knows how long it can 
continue to rise. Hitech, itself, illustrates many things. First, it brings home 
the role of heuristic search. Second, it is built upon massive search {200,000 
positions a second), so that it shows that progress has moved in exactly the 
direction we asserted in the lecture to be wrong. It is fun to be wrong, when 
the occasion is one of new scientific knowledge. But third, the basic theoretical 
lesson from the machine is still the one emphasized in the lecture: namely, 
intelligent behavior involves the interplay of knowledge obtained through search 
and knowledge obtained from stored recognitional structure. For the last 200 
points of Hitech's improvement--and the gains that have propelled it to f a m e -  
have come entirely from the addition of knowledge to a machine with fixed, 
albeit large, search capabilities. Fourth and finally, the astounding performance 
of Hitech and the new phenomena it generates bears witness once more, if 
more is needed, that progress in computer science and artificial intelligence 
occurs by empirical inquiry. 
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